Doping, Conductivity, Resistance

- Doping charge balance: \(N_A^+ + p = N_D^- + n \)
- Mass action equation: \(np = n_i^2 \)

 \(N_A \) = acceptor concentration

 \(N_D \) = donor concentration

 \(n_i \) = mobile electron concentration

 \(N_A^+ \) = ionized acceptor conc.

 \(p \) = mobile hole concentration

- Resistivity and conductivity:

 \[\rho = \frac{1}{\sigma} = \frac{1}{\sigma_{0}} \left(\frac{\mu_n + \mu_p}{q} \right) \]

 \[1 / \sigma = \frac{1}{\rho} \] \(\sigma_{0} \) \(A = \omega t \)

\(q = \) charge on electron = \(1.6 \times 10^{-19} \) C

\(\mu_n = \) electron mobility = \(1500 \) \(\text{cm}^2/\text{Vs} \) for Si at 300K

\(\mu_p = \) hole mobility = \(450 \) \(\text{cm}^2/\text{Vs} \) for Si at 300K

\(n_i = \) \(1.5 \times 10^{10} \) \(\text{cm}^{-3} \) for Si at 300K

P-N Junction

- Built-in voltage \((V_B) \) and the depletion width \((W) \):

 \[V_B = \frac{kT}{q} \ln \left(\frac{N_A N_D}{n_i^2} \right) \]

 \[W = \sqrt{\frac{2q(V_B - V)}{kT}} \left(\frac{1}{N_d} + \frac{1}{N_D} \right) \]

\(\varepsilon_{p} = 11.7 \varepsilon_{0} \), \(\varepsilon_{p} = 8.8542 \times 10^{-12} \) \(\text{C} / \text{Vm} \) \(\text{At} T = 300 \text{K} \)

\[\frac{kT}{q} = 25 \text{mV} \]

- Diode Equation: current \(I_{\text{diode}} = I_0 (e^{qV_B/kT} - 1) \)

- Capacitance: \(C_{\text{P-N junction}} = \frac{\varepsilon A}{W} = \frac{A q e_{p}}{2(V_B - V)} \left(\frac{N_D N_A}{N_D + N_A} \right) \)

Deal-Grove Oxidation Model

\[t_{ox}^2 + A t_{ox} = B(t + \tau) \]

\[\tau = \frac{t_{ox}^2 + A t_{ox}}{B} \]

<table>
<thead>
<tr>
<th>TABLE 11.4</th>
<th>OXIDATION COEFFICIENTS FOR SILICON (II) WAFERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) ((\text{A}))</td>
<td>(B) ((\text{A}))</td>
</tr>
<tr>
<td>(800)</td>
<td>0.370</td>
</tr>
<tr>
<td>(920)</td>
<td>0.235</td>
</tr>
<tr>
<td>(1000)</td>
<td>0.165</td>
</tr>
<tr>
<td>(1100)</td>
<td>0.090</td>
</tr>
<tr>
<td>(1200)</td>
<td>0.040</td>
</tr>
</tbody>
</table>

\(A \) (\(\text{A} \)) \(B \) (\(\text{A} \))

\(A \) (\(\text{A} \)) \(B \) (\(\text{A} \))

\(\text{Dry} \) \(\text{Wet (640 Ke)} \)

\(The \ \tau \ parameter \ is \ used \ to \ compensate \ for \ the \ rapid \ growth \ regime \ for \ thin \ oxides \ (after \ Deal \ and \ Grove). \)

For \(100 \) wafers, multiply \(A \) by \(1.68 \).

Deal-Grove Temperature Dependence

- Fick’s 2nd law of Diffusion (in 1-D):

 \[\frac{\partial C(x, t)}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial C(x, t)}{\partial x} \right) \]

- In 3-D:

 \[\frac{\partial C}{\partial t} = \nabla (D \nabla C), \quad \nabla = \frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \]

- Analytical solutions are for \(D = \) constant and certain special boundary conditions

- Electric field enhancement:

 \[\eta = \frac{C(z)}{ \sqrt{C(z)^2 + 4n_i^2} } \]

\[D_{\text{enhanced}} = D(1 + \eta) \]

\(C(z) \) \(D \) \(\eta \)

\(D \) \(\eta \) \(C(z) \)

\(D \) \(\eta \) \(C(z) \)

\(D \) \(\eta \) \(C(z) \)
Diffusion Case 1: Constant Source

- Initial and boundary conditions
 - \(C(0,t) = C_s \) (concentration at top is constant)
 - \(C(z,0) = 0 \) for \(z > 0 \) (initial condition)
 - \(C(\infty,t) = 0 \)

- Solution:
 \[
 C(z,t) = C_s \text{erf} \left(\frac{z}{2\sqrt{Dt}} \right), \quad t > 0
 \]

\[\sqrt{Dt} \text{ = diffusion length (average distance a dopant moves)} \]

\[Q_T(t) = \frac{2}{\sqrt{\pi}} C_s \sqrt{Dt} \]

Diffusion Case 2: Limited Source

- Initial and boundary conditions
 - \(C(z,0) = 0, \ z > 0 \)
 - \(\frac{dC(0,t)}{dt} = 0 \) (no flux at top)
 - \(C(\infty,t) = 0 \)

- Constant dose:
 \[
 C(z,t) = \frac{Q_T}{\sqrt{\pi Dt}} e^{-z^2/4Dt}, \quad t > 0
 \]

Case 3: Buried Gaussian Source

- Initial and boundary conditions
 - Gaussian:\n \[
 C(0,t) = \frac{Q_T}{2\pi\sigma_0^2} e^{-t^2/2\sigma_0^2}, \quad z \geq 0, \ t > 0
 \]
 - \(\frac{dC(0,t)}{dt} = 0 \) (no flux at top)
 - \(C(\infty,t) = 0 \)

- Solution:
 \[
 C(z,t) = \frac{Q_T}{\sqrt{2\pi\sigma^2}} e^{-t^2/2\sigma^2}, \quad z \geq 0, \ t > 0
 \]

Gaussian Ion Implantation Model

- Gaussian model for the distribution of dopants
 - Mean = \(R_p \) = projected range
 - Standard deviation = \(\Delta R_p \) = straggle
 - Dose = \(\phi \) (# dopants/cm\(^2\))

- Lateral scattering
 - For As, Sb: \(\Delta R_{\perp} = \Delta R_p \)
 - For P: \(\Delta R_{\perp} = 1.2 \Delta R_p \)
 - For B: \(\Delta R_{\perp} = 2 \Delta R_p \)

Ion Implantation Model Parameters

- Thermal Transfer Mechanisms
 - Radiative: Stefan-Boltzmann equation
 \[
 \text{Heat Flow} = \dot{q} = \varepsilon\sigma T^4
 \]
 - \(\varepsilon \) = emissivity of emitting body (\(\varepsilon = 1 \) for black body)
 - \(\sigma \) = Stefan-Boltzmann Constant = 5.6679 \times 10^{-8} \text{ W/m}^2\text{-K}^4

- Conduction: \(\dot{q} = k T \)
- Convection: \(\dot{q} = h(T - T_{\infty}) \)

\[
\varepsilon(\lambda) = 1 - R(\lambda) - T(\lambda)
\]

\(\varepsilon_{Si} \approx 0.7, \quad T_{Si} \approx 0 \)