CHE323/CHE384 Chemical Processes for Micro- and Nanofabrication

Formulas Lectures 20-37

Chris A. Mack Adjunct Associate Professor

http://www.lithoguru.com/scientist/CHE323/

Mean Free Path

 Mean free path (λ) = average distance a molecule travels between collisions

Evaporation Single Wafer Geometry Multiple Wafer Geometry view factor = cosθ

Surface area $\propto r^2$

$$rate \propto \frac{\cos^2 \theta}{r^2} = \frac{h^2}{(h^2 + x^2)^2}$$

 $cos^2\theta$

CVD Deposition Rate

$$v = \frac{k_T}{N} C_g = \frac{k_T}{N} \left(\frac{1}{kT} \right) P_g \qquad \qquad k_T = \frac{h_g k_S}{h_g + k_S}$$

 δ varies slowly with T

 D_q = diffusivity of reactant in gas

C_g = bulk reactant concentration

 δ = boundary layer thickness

 $h_g = D_g/\delta = mass transfer coefficient$

k_s = reaction rate constant

N = # atoms/cm3 in deposited film

© Chris Mack, 2013

RC Time Constant

 $\rho_{\rm AL}$ = 2.8 X 10⁻⁶ Ω cm, $\rho_{\rm Cu}$ = 1.7 X 10⁻⁶ Ω cm, for SiO $_2$ K $_{\rm ox}$ = 3.9

 $R = \rho_m \frac{L}{w_l t_m} \qquad C = \varepsilon_{ox} \frac{t_m L}{w_s}$

 $\tau = RC = \rho_m \varepsilon_{ox} \frac{L^2}{w_l w_s}$

Defect Model

• Independent defects: $Y = (1 - G)e^{-A_cD_o}$

G = fraction of die that always fail (edge die)

A_c = critical area (area of die where a defect matters)

D_o = defect density (# killer defects/area)

Main Western Electric Rules

- Any single point falls outside of the +/- 3σ limits
- Eight successive points are above the mean, or eight successive points are below the mean
- Two out of three successive points are between 2σ and 3σ , or between -2σ and -3σ
- Four out of five successive points are between 1σ and 3σ , or between -1σ and -3σ

Process Capability Index: C_p and C_{pk}

$$C_p = \frac{USL - LSL}{6\sigma}$$

 $C_p = \frac{\textit{USL} - \textit{LSL}}{6\sigma} \hspace{1cm} \text{USL = upper spec limit} \\ \text{LSL = lower spec limit}$

$$C_{pk} = (1 - k)C_p$$

$$C_{pk} = (1 - k)C_p$$
 $k = \frac{2|Target - mean|}{USL - LSL}$

- $C_{pk} > 1$ is minimum requirement
- C_{pk} > 1.5 is good
- C_{pk} > 2 is great (called "six-sigma" quality)

Etch and CMP

- · Etch Selectivity
 - Selectivity versus mask material (s = r_{SiO2}/r_{resist})
 - Selectivity versus etch stop layer (s = r_{SiO2}/r_{Si})

$$Anisotropy = 1 - \frac{r_H}{r_V}$$

CMP Polish Rate $\propto vP$

v = relative speed P = pressure

Useful Constants

· Avogadro Constant Boltzmann Constant (k) 6.02204 X 10²³ mole⁻¹ 1.38066 X 10⁻²³ J/K 8.617 X 10⁻⁵ eV/K 1.3626 X 10⁻²² atm-cm³/K

• Gas Constant (R)

1.987 cal/mole/K

• Electric Charge (q) Permittivity in vacuum (e_o) 1.60218 X 10⁻¹⁹ C

8.854 X 10⁻¹⁴ F/cm

Thermal voltage at 300 K (kT/q)

0.0259 V

- Pressure: 1 atm = 1.01325 ×10⁵ Pa = 1.01325 bar = 760 torr = 14.696 psi (1 Pa = 1 kg/($m \cdot s^2$) = 1 N/ m^2)
- Energy: 1 J = 1 kg m²/s² = 9.4782 ×10⁻⁴ Btu = 6.2415 ×10¹⁶ eV = 0.23901 cal = 1 A V s
- Capacitance: 1 F = 1 A s/V = 1 C/V = 1 s/W

© Chris Mack, 2013