Lecture 33
Semiconductor Manufacturing: Statistical Process Control (SPC)

Chris A. Mack
Adjunct Associate Professor

Process Control and Metrics
- Parametric yield is kept high in two ways
 - Designing a process that can tolerate and acceptable amount of process variation
 - Controlling the process to stay within that acceptable variation
- Two tools often used for process control
 - Statistical process control (SPC)
 - Process Capability metrics

SPC
- SPC is a tool to detect systematic process excursions: variations in a process parameter that are unexpected based on its known statistical history
- Is this an problem?

SPC Method
- Establish historical mean and standard deviation for variable under consideration
 - The mean will follow a normal distribution even if the underlying variable does not (by Central Limit Theorem)
- Use “3σ” probability as an indicator of a problem
 - If an event occurs whose probability of occurring randomly is < 0.3%, chances are this is an error and not just normal variation
- Result: the Western Electric Rules

Main Western Electric Rules
- Any single point falls outside of the +/- 3σ limits
 - 0.3% probability
- Eight successive points are above the mean, or eight successive points are below the mean
 - 0.4% probability each
- Two out of three successive points are between 2σ and 3σ, or between -2σ and -3σ
 - 0.3% probability each
- Four out of five successive points are between 1σ and 3σ, or between -1σ and -3σ
 - 0.5% probability each

Using the Western Electric Rules
- Rules can detect both a mean shift and growth in variation
 - There are a few more rules besides these
- Alarm whenever a rule is violated
 - Look for a cause and fix it!
 - Sometimes, though, the alarm will be false
- Measure of control: average run length = average number of points between alarms
SPC Chart

Process Capability

- SPC charts show how the process is doing compared to its historical behavior
- The “Process Capability” metric seeks to compare this long-term behavior to the specifications
 - Spec: if we keep the parameter within these limits, we are pretty sure our yield and performance will not be affected (based on experience and/or modeling)

Process Capability Index (C_p)

\[C_p = \frac{USL - LSL}{6\sigma} \]

USL = upper spec limit
LSL = lower spec limit

- Higher C_p means a more capable process
- Problem: this metric will not detect a mean shift

New Metric: C_{pk}

\[C_{pk} = (1 - k)C_p \]
\[k = \frac{2|Target - mean|}{USL - LSL} \]

- C_{pk} > 1 is minimum requirement
- C_{pk} > 1.5 is good
- C_{pk} > 2 is great (called “six-sigma” quality)

Lecture 33: What have we learned?

- What is the guiding principle of SPC?
- What are the Western Electric rules?
- What do you do when there is an SPC alarm?
- What is the difference between C_p and C_{pk}?
- What constitutes mediocre, good, and great capability?