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ABSTRACT 
In a previous series of papers, we proposed benchmarks for lithography simulators drawn from the optics 
literature for aerial image, optical film-stack calculations, and mask topography effects. We extend this 
work and present benchmarks for PEB and resist development. These benchmarks can easily be applied to 
any lithography simulator that models these lithographic effects. 

Keywords: Lithography simulation, numerical accuracy, calculus of variations, post-exposure bake, 
development, PROLITH  

1. INTRODUCTION 
 
Numerical simulation has become an essential tool in photolithographic engineering. Simulators are used in 
optimization of source shapes and film stacks, design for manufacturability (DFM), optical proximity 
correction (OPC), and more. As smaller features with even lower k1 values are printed, the accuracy of 
these simulators is crucial, especially if lithographers are to use these simulators to make quantitative 
assessments that lead to critical decision making. 
 
The photolithographic process is made up of many independent steps (for example, imaging and PEB) that 
can be described by their own independent models (Fourier optics and coupled diffusion equations, 
respectively). It is necessary that any numerical implementation of a model in a simulator be reasonably 
fast, free of bugs or algorithm problems, and accurate. For these last reasons, we have extended our 
previous papers [1,2,3] where we proposed standard benchmark problems for aerial image calculations, 
image in resist calculations, and EMF mask topography effects. The benchmarks presented here are for 
post-exposure bake (PEB) and development models.  
 
We will derive closed-form solutions that use the same assumptions used in the model implementation. 
This approach has been taken by other authors, notably Brunner [4] and Gordon [5]. These solutions can be 
compared against a simulator as an absolute standard. The benchmark can then be used to judge the 
simulator, in particular as it applies to speed vs. accuracy tradeoffs. 

2. POST-EXPOSURE BAKE BENCHMARK 
During PEB, the photoacid (H), created during the exposure process, diffuses through the resist and 
catalytically reacts with blocked polymer sites, M. At the same time, the base quencher, Q, also diffuses 
through the resist and neutralizes the acid [6]. Mathematically, we model this as: 
 

 MH
dt

dM ⋅⋅ak- =  (1) 

 HDQHH
dt

dH 2
HQloss  +k- k- = ∇⋅⋅⋅  (2) 
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 QDQH
dt
dQ 2

QQ  +k-  = ∇⋅⋅ . (3) 

 
Here DH is the diffusivity of the acid, kloss is the acid loss reaction rate constant, kQ is the acid-base quench 
rate constant, DQ is the diffusivity of the base quencher, and ka is the deblocking reaction rate constant.  

2.1.  POST-EXPOSURE BAKE SOLUTION 

 
The neutralizing of acid and base makes an analytical solution of equations (1)-(3) difficult to impossible. 
However, a simplified solution is possible with no quencher. Setting Q=0, equations (1)-(3) reduce to two 
equations: 

 MH
dt

dM ⋅⋅ak- =  (4) 

 HDH
dt

dH 2
loss  k- = ∇+⋅  (5)  

D now represents the diffusivity of the acid. Assuming periodic boundary conditions, the following 
solutions for H and M can be shown to satisfy (4) and (5): 
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x is the spatial coordinate in this 1D test problem. The pitch is labeled by p. nĤ  is the Fourier coefficient 

of the initial acid concentration. In the following section a solution will be derived for nĤ  for a specific 
test problem. 
 
Another solution to (4) and (5) can be found for an infinite domain instead of periodic boundaries. The 
solution is obtained with a Green’s function approach. This is the “resist blur” function from the IBM 
group [7]. 
 

2.2.  POST-EXPOSURE BAKE SOLUTION VERIFICATION 
 
To use the solution provided by (6) and (7) as a benchmark, we need to choose a set of conditions that give 

a closed-form solution for nĤ . The mask is alternating PSM with 90nm lines and spaces. For the imaging 
system, we use a 193nm exposure wavelength, NA > 0.54 (2-beam imaging with k1=0.25), coherent 
illumination (σ = 0), TE polarized light, and a reduction ratio = 1.0. The film stack has all optical properties 
set to the properties of air. The exposure dose is 25 mJ/cm2 with the Dill C parameter set to 0.05 cm2/mJ. 
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Post-exposure bake time is 90 seconds. The diffusion coefficient for acid is 10 nm2/s. An amplification rate 
of 0.1 sec-1 is used. 
 

With these illuminator and mask settings, the image in resist electric field E(x) (actually air) is 
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The Fourier coefficients  2
1 π
∓=±E are a result of the diffraction pattern. The image in resist intensity I 

is EE*: 
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The exposure model for the photoacid group concentration (denoted by [PAG]) is 
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The input to PEB is the PAG concentration after the expose step, so the acid concentration 
 
 [PAG]H −=1  (11) 
is given by  
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The solutions for H and M, equations (6) and (7), are expressed as Fourier coefficients of H. Taking the 
Fourier transform of (12), the coefficients are  
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Note that these are modified Bessel functions of the first kind, so the integrals in (13) and (14) can be 
written as 
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where 2
4

π
Dosec ⋅⋅=∆ , and In/2 denotes the Bessel functions [8]. Substitution of the above coefficients 

into equation (7) gives the final closed-form solution to the PEB test problem. 
. 

 
Figure 1 shows the L2-norm of the blocked polymer concentration, calculated over all grid points in the 
simulation region. The errors are small and there is good convergence with grid size. 
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Figure 1. The L2-norm is shown as a function of grid size. The convergence is very good. The tapering off 
of the error at small grid size is due to 6 digits of output in PROLITH results. 

3. DEVELOP BENCHMARK 
 
In this section, analytic solutions are derived for develop paths and develop times. These results will then 
be used as benchmarks to evaluate the accuracy of PROLITH’s resist development model.  
 
The developer front—defined as the border of the developer and resist at some develop time t— starts at 
the top surface of the resist. The front moves at a rate R(x,y,z) that is based on the amount of deblocking the 
polymer resin has undergone during PEB. The rate represents the scalar speed of the developer at a location 
(x,y,z) in the resist. 
 
The develop paths are the rays that track the movement of the front; they are by this definition 
perpendicular to the front. The governing principle that the paths obey is the principle of least time: at a 
particular point in the resist, the path taken is the one that begins at the top and reaches the point the 
quickest. Our goal is to find the path that the developer takes. At first this may seem to be an intractable 
problem. There are after all an infinite number of paths that start from some location at the top of the resist 
and end at a point in the resist.  Fortunately, the well-known mathematics of the calculus of variations 
provides a framework to seek a potential analytic solution [9]. As with most pencil and paper solutions, we 
will only be able to obtain closed-form results for a couple of special cases. 
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The rate R is a function of blocked polymer concentration [10]. It can also be modeled as a function of 
exposure dose E. Various empirical models for how R varies with E have been proposed [11]. The rate is 
typically a highly non-linear function of dose. By way of example, Figure 2 shows a possible develop rate 
distribution, and develop time contours. Three paths to a final point (yf, zf) are indicated. Only one of these 
paths (path C) is optimal. 
 
The develop time, Tdev, is defined as 
 

 ∫=
),(

)0,( 0
))((

),(
ff zy

y
ffdev zyR

dszyT . (15) 

 
Here ds is the infinitesimal arc length at a point along the path. The depth variable is z; it is zero at the top 
of the resist and increases further into the resist. R is allowed to be an explicit function of the y coordinate 
only. (y will be used as the horizontal axis coordinate. Only 2D problems (y and z) will be investigated.) 
Expression (15) says simply that the total time to the final location (yf, zf) is the distance divided by speed 
integrated at all points along the path, starting from (y0, 0).  
 

 
Figure 2. The plot on the left illustrates a possible develop rate as a function y and z. Note how the rate 
goes from Rmax to Rmin over a very short distance. The plot on the right shows three possible paths to the 
point (yf, zf) for the develop rate on the left. The contours represent the developer front at particular times. 
The middle trapezoid represents the final resist profile. Path A reaches the depth zf the quickest, but takes 
too long to reach (yf, zf), because of the extra distance it must travel. Path B is the shortest, but the develop 
rate along the path is not as large as the other paths. Path C, although longer than B, takes the least amount 
of time to get from some point on the surface to (yf, zf). It is optimal because it makes the best use of 
distance and speed. Note that the optimal path is normal to the front.  
 
We are interested in the determining the path y(z). According to the calculus of variations, y(z) satisfies the 
Euler-Lagrange differential equation [9], 
 

 0))(),(,())(),(,( =′−′ ′ zyzyzF
dz
dzyzyzF yy . (16) 
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F is defined as 
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The 21 y′+  term in F results from expressing ds using the Pythagorean Theorem in Cartesian 

coordinates y and z. Fy’ is the partial derivative of F with respect to 'y , where 'y  is dy/dz. If R(y) is not an 
explicit function of z, the Euler-Lagrange equation reduces to the Beltrami identity [9]: 
 
 CzyzyFzyzyzyF y =′′−′ ′ ))(),(()())(),((  (18) 
 
C is a constant that may be determined by the boundary conditions. (It is in fact 1/R evaluated at z=0.) Note 
that the functional Tdev can be now be written in terms of F: 
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))(),(( . (19) 

Substituting F into the Beltrami identity gives  
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which may be integrated to solve for y(z): 
 

 ∫∫ +==
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Bzdz
yRC
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22

. (20) 

 
The constant B can be determined by boundary conditions.  
 
Equation (20) will be our starting point for two test cases. The goal is to find suitable functional forms of 
R(y) that will allow the left hand side of equation (20) to be integrated in a closed-form manner. 
Furthermore, we would like to solve for y=y(z) and substitute this into equation (15) to give an equation for 
Tdev as a function of any location (y,z) in the resist. 
 

3.1. LINEARLY INCREASING DEVELOP RATE 
 
The first form for R that we will consider is a linear rate, symmetric about y=0: 
 

 
max

0
||)(

y
yRyR =  (21) 

R0 is the rate constant. ymax is the maximum extent of the simulation region in the +y and –y direction. This 
rate function might occur in an LPM model [11] if the relative dose E is given by E=|y|/ymax (see Figure 3) 
and R=R0Eγ, where the develop contrast, γ, is one. Note that this an unrealistic develop rate dependence in 
the y direction. One reason is that the image in resist would have to have a linear dependence in y. For 
realistic cases, the image behavior usually has a quadratic or higher dependence on position (due to limited 
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spatial frequencies allowed through the lens and the binary nature of most masks). Also, a develop contrast 
of one corresponds to an unrealistically low contrast for a resist.  

 
Figure 3. The exposure dose as a function of horizontal position and depth in the resist. There is no explicit 
z-dependence in the exposure, corresponding to infinite depth of focus and no absorption.  
 
R is an explicit function of y and an implicit function of z (since y=y(z)). Let |y|->y. We will solve the 
problem for the positive y half-plane and mirror the solution using symmetry. This should cause no loss of 
generality since everywhere except the center, the develop paths will start from outside and arc down and 
in towards the middle of the simulation region. (This will be more obvious after the solution is found.) 
Only at the center are there two ways to arrive, but this is not a concern since it takes an infinite amount of 
time to reach the center. Substituting for R, we have 
 

Bz
yA

ydy +=
+∫ 22

 

 
where A = ymax/(CR0). Integrating and solving for y gives 
 

22 )( BzAy +−=  
 
A and B can be determined by applying boundary conditions. In particular, the slope dy/dz at the top of the 
resist is zero; that is, 'y (z=0) = 0. This is the so-called natural boundary condition [9]. Physically, this 
means the develop paths begin at time t=0 by moving vertically down. To satisfy this boundary condition, 
B must be zero. Next, we have by definition that y(zf) = yf. This requires that  
 

222
ff zyA += . 

 
The geometry of the develop paths is therefore described by 
 

 222)( zzyzy ff −+=  (22) 

 
for R(y)=R0 |y|/ymax. Thus, the develop paths are circles for this R(y), as shown in Figure 4.  
 
We now substitute equation (22) into equation (21), and substitute that result for R into equation (15). The 
result is that 
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After some algebraic simplification, this may be integrated to give 
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This may in turn be solved for yf, which is half the CD for this particular choice of R(y).  
 
For purposes of benchmarking the PROLITH develop routine, a resist thickness of 100 nm is chosen and 
the CD is measured half way down. Choosing R0=16.7 nm/s, we measure the CD at the 60 second contour 
so that the side wall angle is realistic. The behavior for the CD error vs. grid size is shown in Figure 5. 

 
Figure 4. The develop front (contours of constant develop time) is shown for different develop times, 
measured in seconds, for a develop rate that is linear with position y. The parameters are R0 = 16.7 nm/s 
and  ymax = 350 nm. The resist profile is represented by the isosceles triangle at the 60 second contour. 
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Figure 5. CD error vs. grid size for a linear develop rate in y with parameters R0 = 16.7 nm/s and ymax = 350 
nm. 
 
The results indicate that PROLITH converges well with decreasing grid size. The error is large with large 
grid size and for small grid sizes it is under 2nm. One must keep in mind that this develop rate is very 
unrealistic. Still, it is an interesting case that has a simple closed-formed solution. We now move on to a 
develop rate that is more realistic. 

3.2. EXPONENTIALLY INCREASING DEVELOP RATE 
 
The develop rate typically changes by orders of magnitude at the mask edge. For this reason, an 
exponential dependency on spatial coordinate y for the develop rate is more realistic than a linear rate. 
Suppose in particular that the exposure dose as a function of y is given by E(y) = e-sy and that once again 
the rate is R=R0Eγ. Substituting E into R gives 
 
 yseRyR γ−= 0)(  (25) 
 
When the contrast is large, the develop paths are mostly segmented; that is, they proceed vertical down 
initially, and then they move horizontally to reach the final resist profile edge.  
 
With relation (25) for R(y), the develop path to a point (yf, zf) can be shown, using steps similar to the case 
with the linear develop rate, to be: 

 [ ] ff yzszs
s

zy += )sec(/)sec(ln1)( γγ
γ

 (26) 
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Using (15), (25), and (26), it follows that 
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Because Tdev depends on a sinusoid, this result is only valid when πγ <zs . For this reason, γs = 0.38 nm-1 
is chosen. R0 is set to 5.0 nm/s. The CD measurement error vs. grid size is shown in Figure 6 and the final 
resist profile is shown in Figure 7. The PROLITH result converges to the correct result with sub-nanometer 
accuracy for small grid sizes.  
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Figure 6. CD error vs. grid size for an exponential develop rate in y with parameters R0 = 5.0 nm/s and γs = 
0.038nm-1. 
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Figure 7. Resist profile and CD metrology plane (horizontal line) for an exponential develop rate with R0 = 
5.0 nm/s and γs = 0.038nm-1. 
 

4. CONCLUSION 
 
We have found closed form solutions for PEB and develop models. In the case of PEB, an analytic solution 
was found for the latent image after PEB for 2-beam, coherent illumination, with no quencher in the resist. 
PROLITH’s PEB method converges rapidly to the exact solution.  
 
For development, we derived two analytic solutions, one for a linear develop rate and another with an 
exponential develop rate. PROLITH’s develop method gave good results against these closed-form test 
cases. Good convergence was seen for a non-realistic (but analytically solvable) linear develop rate. Sub-
nanometer accuracy and very good convergence in the more realistic exponential develop rate was 
observed. 
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