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Abstract 

In this paper, a stochastic modeling approach is used to predict the results of the exposure 
and post-exposure bake of a chemically amplified photoresist.  The statistics of photon shot 
noise, chemical concentration, exposure, reaction-diffusion, and amplification are derived.  
The result, though preliminary, is a prediction of the standard deviation of the final 
deprotection level of polymer molecules in the resist using simple, analytical expressions.  
Combining this result with ongoing work to characterize the stochastics of resist 
development will eventually lead to a full model of the line-edge roughness of a resist 
feature.  The current model is used to elucidate the impact of acid diffusion on line-edge 
roughness. 
 

Keywords:  Line-edge roughness, linewidth roughness, stochastic modeling, correlation length, roughness 
exponent, autocorrelation. 

 
 
Most theoretical descriptions of lithography make an extremely fundamental and mostly unstated assumption 
about the physical world being described:  the so-called continuum approximation.  Even though light energy 
is quantized into photons and chemical concentrations are quantized into spatially distributed molecules, the 
descriptions of aerial images and latent images ignore the discrete nature of these fundamental units and use 
instead continuous mathematical functions.  When describing lithographic behavior at the nanometer level, 
an alternate approach, and in a very real sense a more fundamental approach, is to build the quantization of 
light as photons and matter as atoms and molecules directly into the models used.  Such an approach is called 
stochastic modeling, and involves the use of random variables and probability density functions to describe 
the statistical fluctuations that are expected.  Of course, such a probabilistic description will not make 
deterministic predictions – instead, quantities of interest will be described by their probability distributions, 
which in turn are characterized by their moments, such as the mean and variance. 
 
 One common approach to studying LER formation is through the use of Monte Carlo simulations1,2,3 
and mesoscale modeling.4  These approaches can be extremely valuable since they can be made rigorous at 
the length scale of interest and can be used to test the impact of various fundamental stochastic mechanisms 
that may be at work.  The drawback to Monte Carlo approaches, however, is their lengthy execution times 
resulting from the need to run each stochastic step a large number of times to provide proper statistical 
results.  Often important physical insights can remain undiscovered beneath the mountains of statistical data 
that a Monte Carlo simulator can generate. 
 
 While Monte Carlo methods can be extremely useful, there is also a need for the development of 
simple, analytical expressions that capture the essence of the LER formation mechanisms.  By formulating 
the equations describing the fundamental processes and kinetics of exposure, baking, and development as 
stochastic equations, one might hope for a solution to these stochastic equations that mimic the mean-field 
solutions that are used in physical lithography simulators today.  Alas, attempts at such a formulation are 



certain to be disappointing as the fundamental stochastic equations remain immensely complicated.5  One 
approach, then, is to look for solutions that provide, rather than the full stochastic nature of each intermediate 
variable, an approximation to the variance of each term.  Thus, while the mean-field theory of the continuum 
models gives the mean of the distribution for each variable in a tractable mathematical form, the goal here is 
to find similar tractable expressions for the variance of each term.  The goal of this paper is provide a 
progress report on this as-yet incomplete effort. 
 
 Much of the treatment given below follows that provided in Ref. 6, with more recent advances 
included.  First, the statistics of photon shot noise are reviewed, providing the standard Poisson statistics of 
photon counting.  Chemical concentrations also result in counting statistics that are Poisson.  The 
probabilities of absorption and exposure are combined with photon and chemical concentration shot noise to 
give the variance of the acid concentration after exposure.  During post-exposure bake, acid diffusion and 
reaction is first formulated to give the effective acid concentration and its variance, followed by the level of 
polymer deprotection and its variance.  The stochastics of photoresist development is touched upon next, but 
the details are left to another publication.  Finally, pulling the final results together, a fist attempt at a 
comprehensive line-edge roughness model is attempted, though many deficiencies remain. 

1. Photon Shot Noise 
 
Consider a light source that randomly emits photons at an average rate of L photons per unit time into some 
area A.  Assume further that each emission event is independent.  Over some small time interval dt (smaller 
than 1/L and small enough so that it is essentially impossible for two photons to be emitted during that 
interval), either a photon is emitted or it is not (a binary proposition).  The probability that a photon will be 
emitted during this interval will be Ldt.  Consider now some long time T (» dt).  What can we expect for the 
number of photons emitted during the period T?  This basic problem is called a Bernoulli trial and the 
resulting probability distribution is the well-known binomial distribution.  If N = T/dt, the number of time 
intervals in the total time, then the probability that exactly n photons will be emitted in this time period is 
given by a binomial distribution P(n).  The binomial distribution is extremely cumbersome to work with as N 
gets large.  If, however, NLdt = TL remains finite as N goes to infinity, the binomial distribution converges to 
another, more manageable equation called the Poisson distribution: 
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Since there is no limit to how small dt can be made, letting dt go to zero will by default make N go to infinity 
for any nonzero time interval T and nonzero photon emission rate L.   
 
 The Poisson distribution can be used to derive the statistical properties of photon emission.  The 
expectation value of n [that is, the mean number of photons that will be emitted in a time interval T, denoted 
by the notation E(n) or n ] is TL (a very reasonable result since L was defined as the average rate of photon 

emission).  The variance (the standard deviation squared) is also TL.  To use these statistical properties, we 
must convert from number of photons to a more useful measure, intensity.  If nphotons is the number of photons 
that cross an area A over a time interval T, the mean intensity of light will be 
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where h is Planck’s constant, c is the vacuum speed of light, and λ is the vacuum wavelength.  The standard 
deviation of the intensity can also be computed from the properties of the Poisson distribution. 
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 As this equation shows, the uncertainty of getting the mean or expected intensity grows as the 
number of photons is reduced, a phenomenon known as shot noise.  As an example, consider a 193-nm 
exposure of a resist with a dose-to-clear of 10 mJ/cm2.  At the resist edge, the mean exposure energy 
(= TI ) will be on the order of the dose-to-clear.  At this wavelength, the energy of one photon, hc/λ, is 

about 1.03 X 10-18 J.  For an area of 1 nm X 1 nm, the mean number of photons during the exposure, from 
equation (2), is about 97.  The standard deviation is about 10, or about 10% of the average.  For an area of 10 
nm X 10 nm, the number of photons increases by a factor of 100, and the relative standard deviation 
decreases by a factor of 10, to about 1%.  Since these are typical values for a 193-nm lithography process, we 
can see that shot noise contributes a noticeable amount of uncertainty as to the actual dose seen by the 
photoresist when looking at length scales less than about 10 nm.   
 
 For Extreme Ultraviolet Lithography (EUVL), the situation will be considerably worse.  At a 
wavelength of 13.5 nm, the energy of one photon will be 1.47 X 10-17 J, about fifteen times greater than at 
193 nm.  Also, the goal for resist sensitivity will be to have EUV resists that are 2–4 times more sensitive 
than 193-nm resists (though it is unclear whether this goal will be achieved).  Thus, the number of photons 
will be 30–60 times less for EUV than 193-nm lithography.  A 1 nm X 1 nm area will see only two to three 
photons, and a 100-nm2 area will see on the order of 200 photons, with a standard deviation of 7%. 

2. Chemical Concentration 
 
Concentration, the average number of molecules per unit volume, exhibits counting statistics identical to 
photon emission.  Let C be the average number of molecules per unit volume, and dV a volume small enough 
so that at most one molecule may be found in it (thus requiring that the concentration be fairly dilute, so that 
the position of one molecule is independent of the position of other molecules).  The probability of finding a 
molecule in that volume is just CdV.  For some larger volume V, the probability of finding exactly n 
molecules in that volume will be given by a binomial distribution exactly equivalent to that for photon 
counting.  And, as before, this binomial distribution will also become a Poisson distribution by letting dV go 
to zero.   
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The average number of molecules in the volume will be CV, and the variance will also be CV.  The relative 
uncertainty in the number of molecules in a certain volume will be 
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[The requirement that the concentration be ‘dilute’ can be expressed as an upper limit to the Poisson 
distribution – for a given molecule size, saturation occurs at some nmax molecules in the volume V.  So long 
as P(nmax) is small, the mixture can be said to be dilute7.] 
 
 As an example, consider a 193-nm resist that has an initial PAG concentration of 3% by weight, or a 
concentration of about 0.07 mole/liter (corresponding to a density of 1.2 g/ml and a PAG molecular weight 
of 500 g/mole).  Converting from moles to molecules with Avogadro’s number, this corresponds to 0.042 
molecules of PAG per cubic nanometer.  In a volume of (10 nm)3, the mean number of PAG molecules will 
be 42.  The standard deviation will be 6.5 molecules, or about 15%.  For 248-nm resists, the PAG loading is 
typically 3 times higher or more, so that closer to 150 PAG molecules might be found in a (10-nm)3 volume, 
for a standard deviation of 8%.  Note that when the mean number of molecules in a given volume exceeds 
about 20, the Poisson distribution can be well approximated with a Gaussian distribution. 
 
 As mentioned briefly above, Poisson statistics apply only for reasonably low concentrations.  The 
random distribution of molecules assumes that the position of each molecule is independent of all the others.  
As concentrations get higher, the molecules begin to ‘crowd’ each other, reducing their randomness.  In the 
extreme limit, molecules become densely packed and the uncertainty in concentration goes to zero.  This 
saturation condition is a function of not only the concentration, but the size of the molecule as well.  To 
avoid saturation, the volume fraction occupied by the molecules under consideration must be small. 

3. Photon Absorption and Exposure 
 
What is the probability that a photon will be absorbed by a molecule of light-sensitive material in the resist?  
Further, what is the probability that a molecule of sensitizer will react to form an acid?  As discussed above, 
there will be a statistical uncertainty in the number of photons in a given region of resist, a statistical 
uncertainty in the number of PAG molecules, and additionally a new statistical uncertainty in the absorption 
and exposure event itself. 
 
 Consider a single molecule of PAG.  First-order kinetics of exposure can be used to derive equation 
the concentration of PAG remaining after exposure (and, as well, the concentration of acid generated) in the 
continuum approximation (this is also called the mean-field solution to the kinetics of exposure).  From a 
stochastic modeling perspective, this kinetic result represents a probability density function for reaction:  
G/G0 is the fraction of PAG that is unreacted in some large volume, and by the Law of Large Numbers this 
must be the probability that any given PAG will remain unexposed.  Let y be a random variable that 
represents whether a given single PAG molecule remains unexposed or was converted to acid by the end of 
the exposure process.  Thus y = 0 means an acid has been generated (PAG has reacted), and y = 1 means the 
PAG has not been exposed (no acid generated).  A kinetic analysis of exposure gives us the probability for 
each of these states, given a certain intensity-in-resist I: 
 

CIteIyP −−== 1)|0( ,      CIteIyP −== )|1(  (6) 
 
 The probability of exposing one acid molecule after exposure can now be translated into a mean and 
uncertainty of the overall acid concentration after exposure.  Consider a volume V that initially contains some 
number n0-PAG PAG molecules.  After exposure, the number of remaining (unexposed) PAG molecules Y will 
be 
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Assuming that each exposure event is independent, the mean of Y becomes 
 

ynY PAG−= 0  (8) 
 
The variance will be6  
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Since σΙ, as given by equation (3), will in general be small, 
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The variance of Y has two components.  The Poisson chemical distribution gives the first term, Y .  Photon 

shot noise adds a second term, inversely proportional to the mean number of photons. 
 
 At this point it is useful to relate the number of remaining PAG molecules per unit volume Y to the 
concentration of acid H, and the initial number of PAGs n0-PAG to the initial PAG concentration G0. 
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where NA is Avogadro’s number.  We can also define a relative acid concentration h to be 
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The means of these quantities can be related by 
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Using equation (12), the variance of the acid concentration can be calculated as 
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Finally, using equation (10), the variance in acid concentration will be 
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 This final result, which accounts for photon fluctuations, uncertainty in the initial concentration of 
photoacid generator, and the probabilistic variations in the exposure reaction itself, is reasonably intuitive.  
The first term on the right-hand side of equation (15) is the expected Poisson result based on exposure 
kinetics – the relative uncertainty in the resulting acid concentration after exposure goes as one over the 
square root of the mean number of acid molecules generated within the volume of interest.  For large 
volumes and reasonably large exposure doses, the number of acid molecules generated is large and the 
statistical uncertainty in the acid concentration becomes small.  For small volumes or low doses, a small 
number of photogenerated acid molecules results in a large uncertainty in the actual number within that 
volume.  The second term accounts for photon shot noise.  For the case of the (10 nm)3 of 193-nm resist 
given above, the standard deviation in initial acid concentration near the resist edge (where the mean acid 
concentration will be about 0.4) will be > 20%.  For 193-nm resists, the impact of photon shot noise is 
minimal compared to variance in acid concentration caused by simple molecular position uncertainty. 
 
 For EUV resists, exposure entails an extra mechanism.  Absorption of a photon leads to ionization 
and the release of possibly several secondary electrons, each of which can potentially be captured by a 
photoacid generator to create and acid.  This mechanism will not be treated here but has been investigated by 
others.8 

4. Acid Catalyzed Reaction −−−−Diffusion 
 
In this section and the next, we’ll consider the polymer deblocking reaction.  In the continuum limit, the 
amount of blocked polymer left after the PEB is given by 
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As before, the latent image of acid after exposure, h(x,y,z, t = 0) used in the continuum approximation is 

actually the mean acid concentration h , with a standard deviation given above.  The effective acid 

concentration, however, has a very specific interpretation:  it is the time average of the acid concentration at 
a given point.  The interesting question to be answered, then, is whether this time-averaging effect of 
diffusion coupled with the acid-catalyzed reaction affects the uncertainty in the effective acid concentration 
compared to the original acid concentration uncertainty. 
 
 To determine the statistical properties of the effective acid concentration, we’ll begin by looking at 
the diffusion of a single molecule of acid.  Let the binary random variable yi(t) represent whether that 
molecule is found in some small volume dV located a distance ri from its original location, during the 
interval of time between t and t + dt.  It will be given by the standard Gaussian diffusion kernel: 
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where D is the acid diffusivity and σD is the acid diffusion length.  For ni acid molecules at this location that 
then diffuse, the total number of acid molecules in that volume dV and over the same time interval will be 
Yi(t): 
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Adding up the contributions from all of the locations that could possibly contribute acid molecules into the 
volume dV during the interval of time between t and t + dt produces the standard convolution result:   
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 We now wish to integrate over time, from 0 to tPEB.   
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Thus, as expected, the effective acid concentration used in the continuum approximation is in fact the mean 
value of a stochastic random variable.  The uncertainty of Y, however, involves some extra complications.  
Leaving the details of the derivation to Ref. 6, we obtain 
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where CovPSF is a new function that I call the ‘covariance point spread function’. 
 
Carrying out the integration above numerically (and again leaving the details of the derivation aside), the 
result (in 3D) becomes 
 

( )rRDPSF
a

rCovPSF
D

2

2)( 







≈

σ
 (22) 

 
where a is the capture radius of the deblocking reaction (called the von Smoluchowski trap radius). 
 
 The impact of the CovPSF can now be determined.  The shape of the CovPSF is very similar to that 
of the RDPSF.  Since the effective acid concentration near the line edge does not differ appreciably from the 
acid concentration when convolved with the RDPSF, the same will be true when convolved with the 
CovPSF.  Thus, the effective acid concentration can be approximated as 
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The standard deviation of the effective acid concentration is approximated as 
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As equation (24) indicates, if the acid diffuses a distance less than the reaction capture range, the catalytic 
nature of the amplification reaction actually increases the stochastic variation in the effective acid 
concentration compared to the original acid concentration.  If, however, the diffusion length is greater than 
this capture range, the time-averaging effect of the catalytic reaction will smooth out stochastic roughness.  It 
is not diffusion, per se, that reduces stochastic uncertainty, but rather the diffusion of a reaction catalyst that 
does so.  Since in real resist systems the diffusion length will invariably be greater than the reaction capture 
distance, the net affect will always be a reduction in the effective acid concentration standard deviation. 

5. Reaction −−−−Diffusion and Polymer Deblocking 
 
The stochastics of the deblocking of a single blocked site will follow along the same lines as the single PAG 
exposure analysis of section 3.  Let y be a random variable that represents whether a given single blocked site 
remains blocked by the end of the PEB.  Thus y = 1 means the site remains blocked, and y = 0 means the site 
has been deblocked.  As before, the continuum kinetic analysis gives us the probability that a single site is 
deblocked for a given effective acid concentration. 
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The probability distribution of heff, however, is not obvious.  While the relative acid concentration has a 
Poisson distribution, the time-averaging effect on the acid diffusion turns the discrete acid random variable 
into a continuous effective acid random variable. 
 
 It will be reasonable to assume that heff is normally distributed with mean and standard deviations as 
given in the previous section.  Thus, the mean value of y becomes 
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The random variable y has a log-normal probability distribution and equation (26) can be recognized as the 
standard result for a log-normal distribution.   
 
 The total number of blocked groups remaining in a certain small volume will be given by Y. 
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The mean of Y can be easily computed, as before. 
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The variance of Y can be found with a result similar to that for photon shot noise during exposure: 
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 From the definitions of M and Y,  
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Thus, 
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For small levels of effective acid uncertainty, 
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As before, the first term captures the Poisson uncertainty due to the initial distribution of blocked polymer.  
The second term captures the influence of the effective acid concentration uncertainty.  Combining this 
expression with the variance of the effective acid concentration, 
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Finally, using equation (15) for the variance of the acid concentration, 
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Or, in a slightly different form, 
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 While the above equations show how fundamental parameters affect the resulting variance in the 
final blocked polymer concentration, interpretation is somewhat complicated by the fact that these 
parameters are not always independent.  In particular, the Byers−Petersen model shows a relationship 
between KamptPEB and σDa.   
 
 Using the example of a typical 193-nm resist, M0NA = 1.2 /nm3, G0NA = 0.042 /nm3 and KamptPEB = 2.  

Consider the case of h  = effh  = 0.3, and σD/a = 5.  For a (10 nm)3 volume, hh /σ ≈ 0.28 and 

effh h
eff

/σ ≈ 0.025.  The remaining blocked polymer will have m  = 0.55 and σm = 0.023, or about 4.3%.  

For a (5 nm)3 volume, σm = 0.064, or about 11%.   

6. Autocorrelation Behavior of Reaction-Diffusion 
 
 Because a single acid molecule diffuses and potentially causes many reactions, these reactions will 
be stochastically correlated9.  If the diffusion of the acid catalyst is the only mechanism by which the 
concentration M becomes spatially correlated, the autocorrelation of the RDPSF will define this spatial 
correlation.  Consider first the (non-normalized) autocorrelation of the effective acid concentration.  
Assuming that the initial distribution of the catalyst is stochastically uncorrelated,  
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 It will be useful to normalize the autocorrelation function to be one at the origin.  For the 1D case, 
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For the 2D and 3D cases, integrations are best done in polar and spherical coordinates, respectively.  This 
allows the double and triple integrals, respectively, to become single integrals over distance r [of the form of 

equation (39)] by multiplying the 2D RDPSF by r  and the 3D RDPSF by r .  Analytical evaluation of 

equation (39) for the 1D, 2D, and 3D cases does not seem possible, so numerical integrations were 



performed.  Figure 1 shows the results.  Each of these results can be extremely well approximated by a 
standard exponential correlation function: 
 

( ) αζττ
2

/)(
~ −= eR

effH  (40) 

 
where ζ is the correlation length and α is the Hurst (roughness) exponent.  Fitting the numerical evaluation 
of equation (39) to the empirical function (40) produces the results shown in Table I, where both a linear fit 
to the autocorrelation function and to the logarithm of the autocorrelation function were performed.  The 
resulting fits are extremely good – plotting the linear fits on Figure 1 would produce lines indistinguishable 
from the calculated results from equation (39).  Obviously, the linear fit does a better job of matching the 
small-τ behavior while logarithmic fitting results in better matching to the large-τ region. 
 
 

Table I.  Results of the best fit of equation (40) to the numerically evaluated equation (39), 

using a least-squares fit to 
effHR

~
 (linear fit) or to its logarithm (logarithmic fit). 

 Linear Fit Logarithmic Fit 

 ζ/σD α ζ/σD α 
1D 1.266 0.848 1.252 0.817 

2D 1.532 0.936 1.515 0.901 

3D 1.528 0.900 1.519 0.879 

 
 

 
Figure 1. Numerical evaluation of the RDPSF autocorrelation for the 1D (thick solid black line), 2D (thin 

solid blue line), and 3D (dashed line) cases. 
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 These results show that diffusion of the catalyst in a first-order reaction-diffusion system produces 
persistent correlation (α > 0.5), with a correlation length that is a multiple of the diffusion length (as 
expected).  For the important 3D case, α ≈ 0.9 and the correlation length is just over 50% greater than the 
catalyst diffusion length.   

7. Acid −−−−Base Quenching 
 
The acid−base neutralization reaction due to the presence of quencher may pose the greatest challenge to 
stochastic modeling of the sort being derived here.  While acid concentrations in chemically amplified resists 
are low, base quencher concentrations are even lower, leading to greater statistical uncertainty in 
concentration for small volumes.  Further, since the reaction is one of annihilation, statistical variations in 
acid and base concentrations can lead effectively to acid−base segregation, with clumps of all acid or all 
base. 10,11  Such clumping is likely to lead to low-frequency line-edge roughness.  The presence of quencher, 
however, also leads to dramatic improvements in the gradient of acid which, as will become clear below, 
leads to improvement in the final line-edge roughness.12  Much further work is needed to study and model 
this phenomenon.  Thus, while acid−base quenching is extremely important in its impact on LER, it will not 
be considered in the model being presented here. 

8. Development 
 
 The surface-limited reaction of a partially deprotected polymer with developer can be treated in a 
stochastic nature.13,14  However, dissolution rate couples with the path of dissolution to produce the final 
photoresist edge, so that the stochastic nature of this dissolution path must also be taken into account.  One 
approach to studying the stochastic nature of photoresist dissolution involves the characterization of scaling 
relationships as a means for elucidating fundamental mechanisms.15,16  An accompanying publication in this 
volume17 addresses recent work on this subject, but the current state of that research does not yet allow its 
integration with the model presented here. 

9. Line-edge roughness – an Overall Model 
 
 In the sections above, a stochastic model for exposure and reaction−diffusion of chemically 
amplified resists was developed.  This stochastic model will now prove useful for the prediction of certain 
line-edge roughness trends.  While development should also be included, for the sake of simplicity we will 
assume an infinite contrast development process so that the line edge will be determined by the blocked 
polymer latent image.  Thus, a simple threshold model for the latent image will determine the resist critical 
dimension.  A Taylor series expansion of the blocked polymer concentration, cut off after the linear term, 
allows us to predict how a small change in blocked polymer concentration (∆m*) will result in a change in 
edge position (∆x): 
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From this, we can devise a simple qualitative model for line-edge roughness.  The standard measure of line-
edge roughness, from a top-down SEM, will be proportional to the standard deviation of blocked polymer 
concentration divided by its gradient perpendicular to the line edge: 
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Michaelson12 plotted measured LER versus calculated values of dm*/dx and found that many different resists 
followed an almost universal curve.  The curve, however, was slightly different than that given by equation 
(42).  In fact, it is well fit by the following empirical expression: 
 

5
/*

33 +=
dxdm

LER  (43) 

 
where LER is the 3σ value, in nanometers, and dm*/dx is in units of 1/µm.  The constant term at the end has 
been the subject of much speculation, and could be related to the influence of development on LER. 
 
 To achieve a low LER it will be necessary to make the standard deviation of the deprotection small 
and make the gradient of deprotection large. A main topic of Chapter 9 of Ref. 6 is how process parameters 
can be used to maximize the latent image gradient, given by  
 

( )( ) ( )
x

I
hhee

x

m
effeff

h fefff

∂
∂−−−≈

∂
∂ −− ln

1ln11
1* αηα

η
 (44) 

 
where αf = KamptPEB, and where 
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The term η represents the ratio of the rate of diffusion for a feature of size L to the rate of reaction.  From 
equation (36) we can see how to minimize the statistical uncertainty in deprotection.  There is one interesting 
variable in common to both:  acid diffusion.  Increasing acid diffusion will reduce *mσ , but will reduce the 
latent image gradient.  One would expect, then, an optimum level of diffusion to minimize the LER. 
 
 To investigate the impact of diffusion on LER, we can combine equations (36) and (44) into (42).  
Thus, for the no-quencher case, and ignoring photon shot noise, 
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so that 
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 Figure 2 shows the trend of LER versus acid diffusion for a 45-nm feature for three different values 
of the deprotection capture range a, 0.5, 1.0, 2.0 and 3.0 nm.  In each case, there is a diffusion length that 
minimizes the LER.  Below the optimum diffusion length, LER is limited by σm* so that increasing the 
diffusion will improve LER.  Above the optimum diffusion length the LER is gradient limited, so that 
increases in diffusion further degrade the gradient and worsen the LER.  This optimum diffusion length is 
given approximately by 
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The optimum diffusion length is constrained by the feature size at one end and the deblocking reaction 
capture range at the other: 
 

La D <<<< σ  (49) 
 
As L decreases, there becomes less room for the diffusion length to fit within these constraints. 
 
 Unless, of course, a is allowed to decrease as well.  This capture range for the deblocking reaction is 
not an easy parameter for the resist chemist to manipulate, but it can be adjusted.  There is a consequence, 
however.  The rate of the deblocking reaction is a strong function of this capture range.  In fact, assuming 
that the amplification reaction is in the diffusion-limited regime, the amount of amplification will be 
controlled by the amplification factor αf: 
 

ADPEBampf NaGtK 0
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To keep line-edge roughness small for smaller features, both the diffusion length and the reaction capture 
range should be lowered in proportion to L.  But this means that the amplification factor will decrease as L3.  
Lower amplification factor will require increased exposure dose to cause the same amount of amplification, 
meaning that dose would have to rise dramatically to keep LER low in the presence of shrinking feature 
sizes.  There is one other term, however, that can slow this unfortunate scaling relationship.  By increasing 
the PAG loading G0, the amplification factor can be kept higher while diffusion and capture range are 
decreased.  There are very real, practical limits to PAG loading, however, and it is doubtful that this lever 
will provide much long-term relief.  It seems that the fundamental stochastic nature of resist chemistry 
creates a need for much higher exposure dose to keep small features from being dominated by LER. 
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Figure 2 Prediction of LER trends for a 45 nm feature for three values of the deblocking reaction capture 

range a (0.5, 1, 2, and 3 nm).  
 

10. Conclusions 
 
In this paper, an attempt has been made to develop a comprehensive stochastic model for LER based on 
deriving approximate expressions for the variance and correlations that occur at each step in the lithography 
process.  While some progress has been made, the resulting model is far from complete. 
 
 The work here begins with photon shot noise.  Speckle has not been discussed here, though recent 
studies have made very good progress in understanding this phenomenon for 193-nm lithography.18,19  Along 
with chemical concentration shot noise, the result is a Poisson distribution.  Combining these distributions 
with the probability of absorption and exposure gives a nearly Poisson acid shot-noise distribution.  
Reaction-diffusion provides an incredibly interesting and important result:  diffusion of the reaction catalyst 
means that the uncertainty in the effective acid concentration is reduced whenever the acid diffusion length is 
greater than the von Smoluchoski trap radius.  Thus, acid diffusion reduces stochastic uncertainty in the 
effective acid concentration.  Since, however, increased acid diffusion also degrades the acid gradient, there 
is an optimum diffusion length for minimizing LER. 
 
 Development is likely to be a very significant generator of roughness.  Unfortunately, our current 
understanding of how development dynamically roughens a surface is insufficient to include these effects in 
the present model.  It seems likely that the polymer molecule size will bring with it the volume scale required 
to turn the variance expressions derived in this paper into quantitative predictors of LER. 
 
 Since the very early days of semiconductor manufacturing, researchers have attempted to predict the 
limits of optical lithography.  As barriers to improvements in resolution were discovered, novel means of 
defying the limits were inevitably found.  Stochastic limits to resolution, in the form of line-edge roughness, 
may be the most fundamental limit to lithographic resolution.  It is unclear how low line-edge roughness can 
be pushed, but progress in reducing LER has been painfully slow over the last decade.  A comprehensive and 
physically accurate stochastic model of lithography is needed before the ultimate limits of optical lithography 
will be known, and eventually reached. 
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