
Defining and measuring development
rates for a stochastic resist: a simulation
study

Chris A. Mack



Defining and measuring development rates for a
stochastic resist: a simulation study

Chris A. Mack
Lithoguru.com
1605 Watchhill Road
Austin, Texas 78703
E-mail: chris@lithoguru.com

Abstract. Photoresist development rate can be defined microscopically
(the development rate at a point) or macroscopically (the propagation
rate of an average resist height). In the presence of stochastic noise,
these two rates will be different. In order to properly calibrate lithography
simulators, the difference between these two definitions of development
rate should be quantified. Using theoretical derivations and a stochastic
(Monte Carlo) development simulator, the propagation rate of a resist sur-
face is characterized in the presence of stochastic variation in the resist
deprotection concentration and a nonlinear development rate response.
The resulting propagation rate (macroscopic development rate) can be
more than an order of magnitude higher than for the case of no stochastic
noise. Correlation in the development rate creates an effective surface
inhibition over a depth into the resist proportional to the correlation length,
with results that are qualitatively different for two-dimensional versus
three-dimensional simulations. The differences between microscopic
and macroscopic dissolution rate can have an important effect on how
development rate models should be calibrated, depending on their use
in continuum or stochastic lithography simulators. © 2013 Society of Photo-
Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMM.12.3.033006]
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roughness; line width roughness; correlation length.
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1 Introduction
Photoresist development rates are commonly measured to
characterize photoresist dissolution behavior. Such data
are frequently used to calibrate development models for sim-
ulators. An important though frequently unstated assumption
of this use is the equivalence of microscopic and macro-
scopic development rates. Microscopic development rate
is the development rate at a point in the resist and is the
rate used by simulators [Fig. 1(a)]. Macroscopic develop-
ment rate is the mean rate at which a large open area of resist
develops down [Fig. 1(b)] and is the quantity measured when
development rates are measured, e.g., when using a dissolu-
tion rate monitor. In the absence of stochastic effects that
result in surface roughness, these two rates are identical.

In the real, stochastic case, the mean propagation rate of a
large open area is a strong function of the stochastic uncer-
tainty of the development rate, especially in regions of mod-
erately low dissolution rates. This paper will explore the
impact of stochastic uncertainty in microscopic development
rate, including the effects of correlations, on the macroscopic
development rate through the use of both analytical deriva-
tions and Monte Carlo simulations. Note that this general
problem, the difference between the local and global front
propagation rate in the presence of noise, is encountered
in many fields.1–3

First, the probability distribution for development rates
will be derived. Then, the various cases of macroscopic
development [one-dimensional (1-D), two-dimensional
(2-D), and three-dimensional (3-D), with and without

correlations] will be studied both analytically and with sim-
ulations. Finally, simulations will show that the disconnect
between microscopic and macroscopic development rates
can be significant, affecting the accuracy of development
model calibration.

2 Theory
Dissolution rate uncertainty will inevitably result from
uncertainty in the underlying inhibitor concentration (e.g.,
the concentration of protecting groups in a chemically ampli-
fied resist). Consider a simple development rate function,4

r ¼ rmax

ðaþ 1Þð1 −mÞn
aþ ð1 −mÞn þ rmin;

a ¼ ðnþ 1Þ
ðn − 1Þ ð1 −mthÞn; (1)

where r is the development rate, m is the relative inhibitor
(protecting group) concentration, and rmax, rmin, n, and mth

are model parameters. Here, we will neglect rmin as small
compared to the development rate in the region of interest.
The edge of a photoresist feature will necessarily have a pro-
tection level that is near the knee of the development rate
curve, so that m > mth. Thus, if n ≫ 1 (which is the case
for a modern, high-contrast photoresist), the development
rate in this region will be well approximated by

r ≈ r 0maxð1 −mÞn; r 0max ¼ rmax

aþ 1

a
: (2)
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This development rate expression will be used throughout
this paper. While simple, it accurately reflects the nonlinear
development rate response for the exposure and deprotection
levels expected near a photoresist feature edge.

Suppose that m is a random variable with a normal dis-
tribution, so thatm ∼ Nðμ; σmÞ. If the randomness ofm is the
only source of uncertainty in the resulting development
rate, a probability distribution function (pdf) for r can be
calculated

pdfr ¼
���� dmdr

����pdfm;
���� dmdr

���� ¼ 1

nr

�
r

r 0max

�1
n

; (3)

pdfr ¼
1ffiffiffiffiffi
2π

p
σm

1

nr

�
r

r 0max

�1
n

e−½1−μ−ðr∕r 0maxÞ1∕n�2∕2σ2m . (4)

Unfortunately, the moments of this distribution (in particular,
the mean and the variance) cannot be analytically calculated,
making the utility of this pdf expression questionable. The
mode, however, does have an analytical form:

rmode ¼ r 0maxð1 −mmodeÞn;

1 −mmode ¼
1 − μ

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4ðn − 1Þσ2m
ð1 − μÞ2

s �
: (5)

This expression gives real roots so long as σm < ð1 − μÞ∕
ð2 ffiffiffiffiffiffiffiffiffiffiffi

n − 1
p Þ.
While not always applicable, the case of a small amount

of noise in the underlying inhibitor concentration will
allow some useful approximations. For small σm (i.e., for
σm ≪ 1 − μ),

1 −mmode ≈ ð1 − μÞ
�
1 − ðn − 1Þ

�
σm

1 − μ

�
2
�

(6)

so that

rmode ≈ rðμÞ
�
1 − ðn − 1Þ

�
σm

1 − μ

�
2
�
n
: (7)

Again for the case of small σm, the actual pdf of Eq. (4) is
well approximated by a generalized gamma distribution
(GGD):5

pdfGGD ¼ β

λΓðαÞ
�
r
λ

�
αβ−1

e−ðr∕λÞβ ; (8)

which has the following properties:

mode ¼ λ
�
α −

1

β

�1
β
; hri ¼ λ

Γ
�
αþ 1

β

�
ΓðαÞ ;

hr2i ¼ λ2
Γ
�
αþ 2

β

�
ΓðαÞ ; (9)

where h: : : i is the average over many instances. Matching
the mode of the GGD to the mode of r, we find that

λ ¼ rmode

�
α −

1

β

�
−1
β

: (10)

The GGD can then be conveniently calculated by defining

γ ≡
�

r
rmode

�
β
�
1 −

1

αβ

�
(11)

so that

pdfGGDðrÞ ¼
�
β

r

��
ααe−α

ΓðαÞ
�
eαð1−γþln γÞ: (12)

As we shall see, the assumption of small σm is equivalent
to saying α ≫ 1, so that Sterling’s approximation to
the gamma function can be used

ΓðαÞ ¼ ααe−α
ffiffiffiffiffiffi
2π

α

r �
1þ 1

12α
þ 1

288α2
þ : : :

�

≈ ααe−α
ffiffiffiffiffiffi
2π

α

r
(13)

giving, for r > 0,

pdfGGDðrÞ ≈
�
1

r

��
β

ffiffiffi
α

pffiffiffiffiffi
2π

p
�
eαð1−γþln γÞ: (14)

The values of α and β can now be determined by empiri-
cally fitting the GGD to numerical evaluations of Eq. (4).
Excellent fits are obtained when

α ¼
�
1 − μ

3σm

�
2

; β ¼ 3

n
: (15)

This leads to an approximate pdf for r of

pdfðrÞ ≈ 1ffiffiffiffiffi
2π

p
�
1

r

��
1 − μ

nσm

�
eαð1−γþln γÞ; (16)

where

(a) 

(b) 

Fig. 1 Photoresist development rate is defined in two ways: (a) micro-
scopic development—the rate at which a point on the resist surface
moves perpendicular to that surface, and (b) macroscopic develop-
ment—the rate at which the mean surface position (the mean devel-
opment front) propagates for a large open-frame exposure.
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γ ¼
�

1 −m
1 −mmode

�
3
�
1 − 3n

�
σm

1 − μ

�
2
�

≈
�
1 −m
1 − μ

�
3
�
1 − 3

�
σm

1 − μ

�
2
�
: (17)

Using the small σm approximation for γ [the right-hand side
of Eq. (17)] requires a small adjustment to the scaling for the
pdf, giving

pdfapproxðrÞ ¼
1

2.54

�
1

r

��
1 − μ

nσm

�
eαð1−γþln γÞ: (18)

Note that γ, and thus the exponential term in this pdf, is not
dependent on the development rate function parameters for
the case of small σm. A plot of Eq. (18) compared to Eq. (4) is
shown in Fig. 2 for the case of n ¼ 10 (a common value for
state-of-the-art photoresists today). Similar fits are obtained
over a range of n from 2 to 15, though the match is not as
good for larger n.

The advantage of using the GGD is the ability to calculate
the mean and variance of the development rate analytically.
Applying Sterling’s approximation to the gamma functions
in Eq. (9)

1þ
�
σr
hri

�
2

¼
ΓðαÞΓ

�
αþ 2

β

�
h
Γ
�
αþ 1

β

�i
2
≈

�
1þ 2

αβ

�
αþ2

β−
1
2�

1þ 1
αβ

�
2αþ2

β−1
: (19)

For αβ ≫ 1,

�
σr
hri

�
2

≈
�
nσm
1 − μ

�
2

þ 1

2

�
1 −

3

n

�
2
�
nσm
1 − μ

�
4

þO

�
nσm
1 − μ

�
6

: (20)

The mean value of the development rate becomes

hri ¼ λ
Γ
�
αþ 1

β

�
ΓðαÞ

≈ rmodee−1∕β
�
1 −

1

αβ

�
−1
β

�
1þ 1

αβ

�
αþ1

β−
1
2

: (21)

For αβ ≫ 1,

hri
rðμÞ ≈ 1þ 1

2

�
1 −

1

n

��
nσm
1 − μ

�
2

þO

�
nσm
1 − μ

�
4

: (22)

The accuracy of these approximations will be tested below
with simulations, along with simulations of the development
front propagation rate (i.e., the macroscopic develop-
ment rate).

3 1-D Development Front Propagation
(Macroscopic Development) Rate

The propagation of the mean resist surface height for an
open-frame exposure is called the average development
front propagation rate (rprop) or the macroscopic develop-
ment rate. For the 1-D case, this quantity can be derived ana-
lytically since the path of dissolution is obviously known.
For a development rate as a function of depth into the resist
rðzÞ, development to a depth D occurs over a development
time tdev according to

tdev ¼
Z

D

0

dz
r
: (23)

For a development rate that only exhibits random variation
(no systematic variations), and for a sufficiently large D,

	
1

r



≈

1

D

Z
D

0

�
1

r

�
dz: (24)

Since rprop can be approximated as D∕tdev, we see by com-
paring Eqs. (23) and (24) that

Fig. 2 Comparison of the numerical calculation for the pdfr (labeled
as “Actual”) to the approximate generalized gamma distribution
(GGD) form of Eq. (18), for rmax ¼ 200 nm∕s, mth ¼ 0.5, n ¼ 10,
μ ¼ 0.73, and σm ¼ 0.03. The two graphs differ only in the use of lin-
ear and log scales for the x -axis.
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rprop ¼
1D
1
r

E : (25)

The mean of the reciprocal development rate can be
derived from the approximate pdf of Eq. (18), giving

	
1

r



¼

Γ
�
α − 1

β

�
λΓðαÞ : (26)

Thus,

rprop
hri ¼ 1

hri
D
1
r

E ¼ ½ΓðαÞ�2
Γ
�
αþ 1

β

�
Γ
�
α − 1

β

� : (27)

Applying, as before, Sterling’s approximation to the gamma
functions

rprop
hri ≈

�
1þ 1

αβ

�1
2
−α−1

β

�
1 −

1

αβ

�1
2
−αþ1

β

. (28)

For αβ ≫ 1,

− ln

�
rprop
hri

�
≈
�
nσm
1 − μ

�
2

þ 9

2n2

�
nσm
1 − μ

�
4

þO

�
nσm
1 − μ

�
6

(29)

and

− ln

�
rprop
rðμÞ

�
≈
1

2

�
1þ 1

n

��
nσm
1 − μ

�
2

þO

�
nσm
1 − μ

�
4

: (30)

The results above show that for 1-D development the
impact of underlying development randomness is to decrease
the macroscopic development rate compared to the case of
development without noise. Since the development path is
constrained to a straight line, the time required to develop
down is dominated by the slowest developing bits of resist.
For the cases of 2-D and 3-D development, the results are
qualitatively different. Since the path of development is
not dimensionally constrained, the path can go around insol-
uble bits of resist.6 To explore the impact of development rate
noise on the macroscopic development rate in 2-D or 3-D,
Monte Carlo simulations will be employed.

4 2-D and 3-D Monte Carlo Simulations:
Uncorrelated

Simulation was used to predict the resist height as a function
of development time for an open-frame exposure/develop-
ment in the presence of stochastic dissolution-rate noise.7,8

A standard fast marching level set method9,10 was used to
convert a regular grid of development rates into a resist sur-
face as a function of development time, using a linear inter-
polation of development rates between grid points. The
development model discussed above in Eq. (2) was used,
with m ∼ Nðμ; σmÞ selected using a random number gener-
ator for each grid point. The grid size was set to 1 nm. For
2-D (1þ 1) simulations, the simulation width was 4096 grid
elements and the resist thickness was 4096 grids. The devel-
opment time was adjusted in each case so that ∼2000 time

steps would allow the front to reach the bottom of the resist.
For 3-D simulations (2þ 1), the widths in x and y were 512
grids, the resist thickness was 512 or 1024 grids, and ∼500 or
1000 times steps were used. The development model param-
eters were rmax ¼ 200 nm∕s, mth ¼ 0.5, and n was varied
between 5 and 15 (typical parameters for common resist
materials). At each time step, a resist surface was extracted
and the average resist height was calculated.

For each combination of μ and σm evaluated, the mean
and standard deviation of the microscopic development
rate were calculated, and the development front propagation
rate was determined by fitting the average resist surface
height versus time to a straight line. An example of the
2-D simulation results, for n ¼ 10, is shown in Fig. 3. An
example of 3-D simulation results is shown in Fig. 4.
Interestingly, all results follow a single curve as a function
of one parameter, nσm∕ð1 − μÞ.

The simulation results were fit to semi-empirical expres-
sions (guided by the results of the theory section above).
Equation (20) predicts an approximately linear variation
of the relative development rate uncertainty with relative
deprotection uncertainty, but for higher amounts of uncer-
tainty a higher-order term is required. For 2-D and 3-D sim-
ulations and for all values of n, simulation results follow

(a)

(b)

Fig. 3 Two-dimensional (2-D) simulation results for n ¼ 10. Each
data point is the average of 100 trials. μ was varied between 0.70
and 0.79 and σm was varied between 0.005 and 0.050.
(a) Development rate noise and (b) relative macroscopic development
rate.
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�
σr
hri

�
2

≈
�
nσm
1 − μ

�
2

þ
�
0.50 −

2.7

n

��
nσm
1 − μ

�
4

: (31)

The front propagation rate, rprop, was also fit to empirical
equations.

2-D∶ rprop≍rðμÞ
�
1þ

�
nσm
1 − μ

�
1.5

þ
�
0.27 −

1

n

��
nσm
1 − μ

�
3
�
; (32)

3-D∶ rprop≍rðμÞ
�
1þ 2.2

�
nσm
1 − μ

�
2

þ ð0.04n − 0.188Þ
�
nσm
1 − μ

�
4

þ ð0.0016n − 0.008Þ
�
nσm
1 − μ

�
6
�

(33)

In the above expressions, the propagation rate was
expressed relative to the development rate at the mean depro-
tection concentration, rðμÞ. It is also interesting to see how
the front propagation rate compares to the mean development
rate, hri. In a previous study that assumed an uncorrelated
r ∼ Nðhri; σrÞ, the empirical results were5

2-D∶ rprop ≈ hri
�
1þ 0.93

�
σr
hri

�
1.67

�
; (34)

3-D∶ rprop ≈ hri
�
1þ 1.47

�
σr
hri

�
1.67

�
: (35)

Thus, for Gaussian development rate noise, increasing the
development rate uncertainty always resulted in an increase
in the macroscopic development rate (over the range of noise
studied, which kept σr∕hri<0.3).

For development noise that follows the highly skewed
GGD, the results were extended to higher noise levels to
reveal a different regime. Figure 5 shows that a plot of
rprop∕hri as a function of σr∕hri produces a curve almost
independent of n. Further, there are two apparent regimes.
For low σr∕hri (less than ∼1.5), the macroscopic develop-
ment rate grows with increasing development rate noise,
just as for the case of Gaussian noise. But for higher levels
of noise the macroscopic development rate actually slows
down (as it always does for the 1-D case).

Empirically, the 2-D data of Fig. 5 follows this expres-
sion:

rprop ≃ hri
�
1þ a

�
σr
hri

�
1.55

�24 sb0�
σr
hri
�
b þ sb0

3
5 (36)

with a ¼ 1, s0 ¼ 1.42þ 0.23∕n and b ¼ 2.13þ 0.48∕n.
This model, along with the data for n ¼ 10, is shown
in Fig. 6.

For 3-D simulations, we see the same basic trend as for
2-D, but the peak propagation rate occurs at a much higher
noise level (greater than 4). The same Eq. (36) matches the
3-D data using a ¼ 1.88–1.1∕n, s0 ¼ 1.83þ 2.4∕n and
b ¼ 1.77þ 0.67∕n. The fact that the macroscopic

Fig. 4 Three-dimensional (3-D) simulation results for n ¼ 10. Each
data point is the average between 4 and 50 trials. μ was varied
between 0.72 and 0.77 and σm was varied between 0.001 and
0.055. The resulting r ðμÞ went from 0.08 to 1.92 nm∕s and the propa-
gation rate varied from 0.1 to 6.7 nm∕s.

Fig. 5 2-D simulation results for n ¼ 5 to 15 for GGD noise. Each data
point is the average of 100 trials.

Fig. 6 2-D simulation results for n ¼ 10 (open circles) and the model
(solid line) of Eq. (36).
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development rate slows down relative to the mean at a much
higher level of noise reflects the increased opportunities for
the development paths to avoid slow-dissolving bits of resist
in 3-D compared to 2-D.

5 Monte Carlo Simulations: Correlated
Simulations using correlated noise employed the same
parameters as described above for uncorrelated simulations.
To generate the correlated rate noise, the previously derived
reaction–diffusion PSD11 and the numerical method pro-
posed by Thorsos12 were used. For each combination of μ
and σm evaluated, the development front propagation rate
was determined by fitting the average resist surface height
versus time with a straight line, excluding the top half of
the photoresist. The reason for excluding the top portion
of the resist can be seen by looking at the development
rate as a function of depth into the resist (Fig. 7).

In all cases, the dissolution front begins propagating at hri
(equal to 0.572 nm∕s in this case), then grows to a steady-
state propagation rate (about 0.835 nm∕s in the 2-D case).
For uncorrelatedm, the front propagation rate grows quickly,
reaching halfway between hri and the steady-state rate in
about 3 nm (for these 2-D simulations). When the underlying
inhibitor concentration is correlated, the front propagation
rate holds about steady until a resist thickness equal to

the correlation length is consumed. Then, the propagation
rate rises more slowly, reaching halfway between hri and
the steady-state rate at a depth equal to about 3.5 times the
correlation length. Note that the final propagation
rate is about independent of the correlation length for the
2-D case.

Interestingly, the 3-D case shows far less surface inhibi-
tion due to correlated noise than the 2-D case (reaching half-
way between hri and the steady-state rate at a depth about
equal to one correlation length, rather than 3.5). Further, the
final, steady-state propagation rate increases significantly
with increasing correlation length. It is clear that 2-D simu-
lations of stochastic development may not be a good proxy
for a 3-D reality, even qualitatively. It is also clear that for
sufficiently thin resists (with thickness on the order of the
correlation length) a “bulk” behavior of the development
rate will not be reached.

6 Discussion and Conclusions
Lithography simulators, whether making the continuum
approximation or performing stochastically, require a
model relating the dissolution rate at a point in the resist
to the level of deprotection at that point. The data to calibrate
such a model universally comes from measurements of film
thickness versus development time for large open-frame
exposures. As the simulations performed in this work show,
the average development front propagation rate, as might be
measured by a dissolution rate monitor, can be many times
larger than the development rate at the mean deprotection
concentration when stochastic variations in deprotection
rate are present. Figure 4 shows propagation rates >20 times
higher than the expected rate. A summary of this effect is
shown in Fig. 8, where the impact of stochastic noise is indis-
tinguishable from an increase in both mth and rmin (Fig. 9).

The reason for this behavior is the dramatically skewed
probability distribution for development rate that arises
from a normally distributed deprotection level when the dis-
solution rate dependence is highly nonlinear (i.e., for a high
value of n). The results presented above give rise to two
concerns. When using dissolution rate data to calibrate a con-
tinuum model, differences in the variance of the deprotection
level will affect the data and thus, the model fit (Fig. 9). If the
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Fig. 7 Simulation results of front propagation rate as a function of
depth into the resist for n ¼ 10, μ ¼ 0.73, σm ¼ 0.03 (giving σr∕hr i ¼
1.25 in 2-D) and varying deprotection correlation lengths (labeled as
Lc) for (a) 2-D (average of 8000 trials) and (b) 3-D (average of 100
trials).

Fig. 8 Comparison of 3-D simulation results of the development front
propagation rate (for n ¼ 10) for different σm (uncorrelated noise). The
“model” curve corresponds to σm ¼ 0.
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continuum simulator is to be used for cases where the vari-
ance in deprotection level matches that of the dissolution rate
measurement experiment, all is well. But if not, there will be
some concern as to the faithfulness of the simulation results.
When using dissolution rate data to calibrate a stochastic
model, the calibration process should include stochastic
effects as well. Otherwise, a continuum model calibration
process could greatly overestimate the dissolution rate values
to be used in a stochastic simulator near the knee of the
development curve.

Further, both the qualitative and quantitative differences
between the results of 2-D and 3-D simulations of stochastic
development indicate that the common practice of using sim-
pler and faster 2-D simulations as a proxy for a 3-D reality
may be suspect. Full 3-D simulations will likely be required
to understand even qualitatively the impact of stochastic
development on lithographic results.

Finally, a grid size of 1 nm was used throughout this
paper. An alternate interpretation of the grid, however,
would be to consider each 3-D grid element as a resist poly-
mer molecule. Typical resists employ polymers that occupy
volumes on the order of 10 nm3. Thus, in this interpretation a

correlation length of 5 would not be 5 nm, but would be a
correlation that reaches across five polymer molecules. All of
the results presented in this paper could also be interpreted in
this way.
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a function of stochastic noise.
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