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Welcome to The Lithography Tutor, a new regular feature of Microlithography 
World.  As the name implies, the purpose of this column is to present lithography 
information in a tutorial format.  Each issue of Microlithography World will carry 
a two to three page edition of this continuing series on the basic principles of 
optical lithography.  To give you a brief outline of what is to come in the next 
several issues, we'll begin by studying optics.  How is an image formed by a 
projection optical system (stepper or scanner)?  What is the influence of 
wavelength, numerical aperture, coherence, illumination? Then, we will examine 
how this image propagates through the photoresist (including absorption and 
standing waves) and exposes the resist.  Finally, the properties of development 
will be discussed.  From here, we can begin discussing lithography as a system, 
define what is meant by lithographic quality, and look for ways to optimize our 
lithography system to maximize its quality.  All this in two to three pages per 
issue!  I'm not sure how long it will take to get through all of these topics, but I'll 
certainly have fun writing this column.  I hope you will enjoy reading it. 

- CAM 
 
 
 
Since 1973, when Perkin-Elmer first introduced their scanning projection system for lithography, 
optical projection of a mask pattern onto a photoresist coated wafer has become the standard 
method of lithographic imaging in the semiconductor industry.  Today's projection tools, both 
steppers and the step-and-scan, are multi-million dollar systems of incredible complexity and 
technological achievement.  The sophistication of a state-of-the-art lithographic lens today would 
have been unimaginable when the first stepper (from GCA) was introduced to the semiconductor 
industry in 1978.  Is it possible for an average lithographer to understand how such systems 
work?  Certainly!  The principles of operation of a lithographic projection system have not 
changed in twenty years, only their implementation has.   
 
Consider the generic projection system shown in Fig. 1.  It consists of a light source, a condenser 
lens, the mask, the objective lens, and finally the resist-coated wafer.  The combination of the 
light source and the condenser lens is called the illumination system.  I will use the term "lens" 
the way an optical designer would:  a lens is a system of (possibly many) lens elements.  Each 
lens element is an individual piece of glass (refractive element) or a mirror (reflective element).  



The purpose of the illumination system is to deliver light to the mask (and eventually into the 
objective lens) with sufficient intensity, the proper directionality and spectral characteristics, and 
adequate uniformity across the field (more on illumination systems later).  The light then passes 
through the clear areas of the mask and diffracts on its way to the objective lens.  The purpose of 
the objective lens is to pick up a portion of the diffraction pattern and project an image onto the 
wafer which, one hopes, will resemble the mask pattern. 
 
The first and most basic phenomenon occurring here is the diffraction of light.  Most of us think 
of diffraction as the bending of light as it passes through an aperture, which is certainly an 
appropriate description for diffraction by a lithographic mask.  But more correctly, diffraction 
theory simply describes how light propagates. This propagation includes the effects of the 
surroundings (boundaries).  Maxwell's equations describe how electromagnetic waves propagate, 
but using partial differential equations of vector quantities which are extremely difficult to solve 
without the aid of a powerful computer.  A simpler approach is to artificially decouple the 
electric and magnetic field vectors and describe light as a scalar quantity.  Under most 
conditions scalar diffraction theory is surprisingly accurate and shows that electric and magnetic 
fields do not significantly interact in typical optical situations.  Scalar diffraction theory was first 
rigorously used by Kirchoff in 1882, and involves performing one numerical integration (much 
simpler than solving partial differential equations!).  Kirchoff diffraction was further simplified 
by Fresnel for the case when the distance away from the diffracting plane (that is, the distance 
from the mask to the objective lens) is much greater than the wavelength of light.  Finally, if the 
mask is illuminated by a spherical wave which converges to a point at the entrance to the 
objective lens, Fresnel diffraction simplifies to Fraunhofer diffraction. 
 
With Fraunhofer diffraction, we have simplified the problem to the point where it may be safe to 
show an equation.  Let us assume we know our mask pattern, and that we can describe its 
electric field transmittance as m(x,y), where the mask is in the x,y-plane and m(x,y) has in general 
both magnitude and phase.  For a simple chrome-glass mask, the mask pattern becomes binary:  
m(x,y) is 1 under the glass and 0 under the chrome.  Let the x',y'-plane be the diffraction plane, 
that is, the entrance to the objective lens, and let z be the distance from the mask to the objective 
lens.  Finally, we will assume monochromatic light of wavelength λ and that the entire system is 
in air (so we can drop the index of refraction).  Then, the electric field of our diffraction pattern, 
E(x',y'), is given by the Fraunhofer diffraction integral: 
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where fx = x'/zλ and fy = y'/zλ and are called the spatial frequencies of the diffraction pattern. 
 
So why show an equation in a tutorial?  For many scientists and engineers (and especially 
electrical engineers), this equation should be quite familiar:  it is simply a Fourier transform.  
Thus, the diffraction pattern (i.e., the electric field distribution as it enters the objective lens) is 
just the Fourier transform of the mask pattern.  This is the principle behind an entire field of 
science called Fourier Optics (for more information, consult Goodman's classic textbook 
Introduction to Fourier Optics, McGraw-Hill).  Is this Fourier transform relationship useful?  



Absolutely!  Fourier transforms are relatively easy to calculate, often using pencil and paper.  
What is more, you can usually find your answer in a table of Fourier transforms.  Let's look at 
two examples.  Fig. 2 shows two mask patterns, one an isolated space, the other a series of equal 
lines and spaces, both infinitely long in the y-direction.  The resulting mask pattern functions, 
m(x), look like a square pulse and a square wave, respectively.  The Fourier transforms are easily 
found in tables or textbooks and are also shown in Fig. 2.  The isolated space gives rise to a sinc 
function diffraction pattern, and the equal lines and spaces yield discrete diffraction orders.   
 
Let's take a closer look at the diffraction pattern for equal lines and spaces.  Notice that the 
graphs of the diffraction patterns in Fig. 2 use spatial frequency as its x-axis.  Since z and λ are 
fixed for a given stepper, the spatial frequency is simply a scaled x'-coordinate.  At the center of 
the objective lens entrance (fx = 0) the diffraction pattern has a bright spot called the zero order.  
The zero order is the light which passes through the mask and is not diffracted.  You can think of 
it as D.C. light, providing power but no information as to the size of the features on the mask.  
To either side of the zero order are two peaks called the first diffraction orders.  These peaks 
occur at spatial frequencies of ±1/p where p is the pitch of the mask pattern (linewidth plus 
spacewidth).  Since the position of these diffraction orders depends on the mask pitch, their 
position contains information about the pitch.  It is this information that the objective lens will 
use to reproduce the image of the mask (we'll talk more about this in the next column).  In fact, 
in order for the objective lens to form a true image of the mask it must have the zero order and at 
least one higher order.  In addition to the first order, there can be many higher orders, with the 
nth order occurring at a spatial frequency of n/p.   
 
Diffraction patterns may seem a bit esoteric if your interest lies in images printed in photoresist.  
However, using our knowledge of diffraction patterns, we can understand how the numerical 
aperture affects resolution, describe partial coherence, determine why off-axis illumination 
works, and understand the fundamental advantages of phase-shifting masks.  But I am getting 
ahead of myself.  In the next issue we'll propagate our diffraction patterns through the objective 
lens to see how an image is formed. 
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Figure 1.  The basic components of a generic optical projection system. 
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Figure 2.  Two typical mask patterns, an isolated space and an array of equal lines and spaces, 
and the resulting Fraunhofer diffraction patterns. 


