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Immersion lithography.  Two years ago saying this phrase to a lithographer might have elicited a 
perplexed look, or possibly the knowing smile one usually reserves for an eccentric uncle.  
Today it is the great wet hope of the semiconductor industry.  The quick escalation of immersion 
lithography from idea to practice would be an interesting study in human (or possibly mob) 
psychology, especially since the scientific principles underlying the technology have been know 
for well over 100 years.  In any case, immersion lithography is changing the industry’s roadmap 
and seems destined to extend the life of optical lithography to new, smaller limits.  In this 
column I’ll explain why there is so much excitement around a cup of pure water. 
 
 The story of immersion lithography begins with Snell’s Law.  Light traveling through 
material 1 with refractive index n1 strikes a surface with angle θ1 relative to the normal to that 
surface.  The light transmitted into material 2 (with index n2) will have an angle θ2 relative to 
that same normal as given by Snell’s law. 
 
 2211 sinsin θθ nn =  (1) 
 
Now picture this simple law applied to a film stack made of up any number of thin parallel layers 
(Figure 1a).  As light travels through each layer Snell’s law can be repeatedly applied: 
 
 kknnnnn θθθθθ sin...sinsinsinsin 44332211 =====  (2) 
 
Thanks to Snell’s law, the quantity nsinθ is invariant as a ray of light travels through this stack 
of parallel films.  Interestingly, the presence or absence of any film in the film stack in no way 
affects the angle of the light in other films of the stack.  If films 2 and 3 were removed from the 
stack in Figure 1a, for example, the angle of the light in film 4 would be exactly the same. 
 
 We find another, related invariant when looking at how an imaging lens works.  A well 
made imaging lens (with low levels of aberrations) will have a Lagrange invariant (often just 
called the optical invariant) that relates the angles entering and exiting the lens to the 
magnification m of that lens.  
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where no is the refractive index of the media on the object side of the lens, θo is the angle of a ray 
of light entering the lens relative to the optical axis, ni is the refractive index of the media on the 
image side of the lens, and θi is the angle of a ray of light exiting the lens relative to the optical 
axis (Figure 1b).  Note that, other than a scale factor given by the magnification of the imaging 



lens and a change in the sign of the angle to account for the focusing property of the lens, the 
Lagrange invariant makes a lens seem like a thin film obeying Snell’s law.  (It is often 
convenient to imagine the imaging lens as 1X, scaling all the object dimensions by the 
magnification, thus allowing m = 1 and making the Lagrange invariant look just like Snell’s 
law). 
 
 These two invariants can be combined when thinking about how a photolithographic 
imaging system works.  Light diffracts from the mask (the object of the imaging lens) at a 
particular angle.  This diffracted order propagates through the lens and emerges at an angle given 
by the Lagrange invariant.  This light then propagates through the media between the lens and 
the wafer and strikes the photoresist.  Snell’s law dictates the angle of that ray in the resist, or 
any other layers that might be coated on the wafer.  Taking into account the magnification scale 
factor, the quantity nsinθ for a diffracted order is constant from the time it leaves the mask to the 
time it combines inside the resist with other diffraction orders to form an image of the mask. 
 
 So how does this optical invariant affect our understanding of immersion lithography?  If 
we replace the air between the lens and the wafer with water, the optical invariant says that the 
angles of light inside the resist will be the same, presumably creating the exact same image.  Is 
there then no impact of immersion lithography?  There is, from two sources:  the maximum 
possible angle of light that can reach the resist, and the phase of that light. 
 
 Consider again the chain of angles through multiple materials as given by equation (2).  
Trigonometry will never allow the sine of an angle to be greater than one.  Thus, the maximum 
value of the invariant will be limited by the material in the stack with the smallest refractive 
index.  If one of the layers is air (with a refractive index of 1.0), this will become the material 
with the smallest refractive index and the maximum possible value of the invariant will be 1.0.  
If we look then at the angles possible inside of the photoresist, the maximum angle possible 
would be 
 
 resistresist n/1sin max, =θ  (4) 
 
Now suppose that the air is replaced with a fluid of a higher refractive index, but still smaller 
than the index of the photoresist.  In this case, the maximum possible angle of light inside the 
resist will be greater 
 
 resistfluidresist nn /sin max, =θ  (4) 
 
At a wavelength of 193nm, resists have refractive indices of about 1.7 and water has a refractive 
index of about 1.44.  The fluid does not make the angles of light larger, but it enables those 
angles to be larger.  If one were to design a lens to emit larger angles, immersion lithography 
will allow those angles to propagate into the resist.  The numerical aperture of the lens (defined 
as the maximum value of the invariant nsinθ that can pass through the lens) can be made to be 
much larger using immersion lithography, with the resulting improvements in resolution one 
would expect.  Numerical apertures above 1.3 seem probable for future 193nm immersion 
scanners. 



 
 The second way in which the use of an immersion fluid changes the results of imaging is 
the way in which the fluid affects the phase of the light as it reaches the wafer.  Light, being a 
wave, undergoes a phase change as it travels.  If light of wavelength λ travels some distance ∆z 
through some material of refractive index n, it will undergo a phase change ∆φ given by 
 
 λπϕ /2 zn∆=∆  (4) 
 
A phase change of 360º will result whenever the optical path length (the refractive index times 
the distance traveled) reaches one wavelength.  This is important in imaging when light from 
many different angles combine to form one image.  All of these rays of light will be in phase 
only at one point – the plane of best focus.  When out of focus, rays traveling at larger angles 
will undergo a larger phase change than rays traveling at smaller angles.  As a result, the phase 
difference between these rays will result in a blurred image. 
 
 How does immersion lithography affect this picture?  For a given diffraction order (and 
thus a given angle of the light inside the resist), the angle of the light inside an immersion fluid 
will be less than if air were used.  These smaller angles will result in smaller optical path 
differences between the various diffracted orders when out of focus, and thus a smaller 
degradation of the image for a given amount of defocus.  In other words, as discussed in the last 
edition of this column, for a given feature being printed and a given numerical aperture, 
immersion lithography will provide a greater depth of focus. 
 
 In summary, immersion lithography provides two major benefits.  First, higher numerical 
apertures can be built than would be possible when using lenses in air, resulting in improved 
resolution.  These lenses may be enormously complex, but they are possible.  Second, while 
smaller features always have less depth of focus, immersion allows a slower loss of DOF as we 
progress toward printing ever smaller features.  And since these benefits come without a change 
in exposure wavelength, existing materials and methodologies can be extended further.  In the 
end, immersion will be successful, or not, depending on how economically it delivers on its 
promise of improved resolution and better depth of focus. 
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Figure 1a 
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Figure 1b 

 
 
 
 
Figure 1. Two examples of an “optical invariant”, a) Snell’s law of refraction through a film 

stack, and b) the Lagrange invariant of angles propagating through an imaging lens. 


