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As discussed in the last edition of this column (MLW, May 2006), diffusion in conventional 
(non-chemically amplified) resists has a very predictable (and undesirable) impact on resolution.  
The effects of diffusion can be determined by convolving the pre-diffusion latent image with a 
diffusion “point spread function”, which for Fickean (constant diffusivity) diffusion is simply a 
Gaussian whose sigma is equal to the diffusion length.   
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where m(x) is the (1D) latent image after exposure, m*(x) is the latent image after diffusion, and 
σD is the diffusion length.  This diffusion point spread function (DPSF) is the final chemical 
distribution after a bake if the initial concentration profile had been an ideal delta-function of 
concentration. 
 
 For chemically amplified resists, things are a bit more complicated.  Diffusion during 
post-exposure bake is accompanied by a deblocking reaction that changes the solubility of the 
resist.  Thus, it is not the final, post-diffusion distribution of exposure reaction products that 
controls development but rather the integral over time of these exposure products.  Things 
become even more complicated when acid loss is accounted for.  In particular, the presence of 
base quencher (that also may diffuse) leads to both complexity and advantage in tailoring the 
final latent image shape.  However, for the simplified case of no acid loss, an analytical solution 
is possible. 
 
 Letting h(x, t = 0) be the concentration of acid (the exposure product) at the beginning of 
the post-exposure bake (PEB), an effective acid latent image can be defined as 
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where RDPSF is the reaction-diffusion point spread function [1].  This effective acid 
concentration distribution h*(x) can be used to calculate the reaction kinetics of the PEB as if no 
diffusion had taken place.  In other words, the effects of diffusion is separable from the reaction 
for the case of no acid loss.  The RDPSF then becomes analogous to the DPSF of a conventional 
resist. 
 



 For the 1D case (which will be useful for our subsequent discussion of resolution), the 
Gaussian diffusion kernel is affected by time integration through the diffusion length, 

tDD 2=σ , where D is the acid diffusivity in resist.  Thus, 
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The integral is solvable, resulting in an interesting final solution. 
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The first term on the right hand side of equation (4) is nothing more than twice the DPSF, and 
thus accounts for pure diffusion.  The second term, the complimentary error function times x, is a 
reaction term that is subtracted and thus reduces the impact of pure diffusion.  Each term, as well 
as the final RDPSF, is plotted in Figure 1. 
 
 One of the most important properties of the RDPSF is that it falls off in x much faster 
than the DPSF with the same diffusion length.  The full width half maximum for the DPSF is 
about 2.35σD, but for the RDPSF it is about σD.  Also, invoking a large argument approximation 
for the Erfc,  
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In other words, a reaction-diffusion resist system can tolerate more diffusion than a conventional 
resist system. 
 
 To further compare reaction-diffusion to pure diffusion, consider again the impact of 
diffusion (and reaction-diffusion) on resolution.  As in the last column, we’ll use a generic latent 
image for a repeating line/space pattern of pitch p described as a Fourier series: 
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where a pattern symmetrical about x = 0 is assumed so that there are no sine terms in the series.  
Larger values of n represent higher frequency terms (harmonics) in the image, though a typical 
high resolution dense pattern will have an upper limit of N = 2 or 3.  The effect of pure diffusion, 
calculated as a convolution with the DPSF, is simply a reduction in the amplitude of each 
harmonic. 
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 In the reaction-diffusion case, we convolve equation (7) with the RDPSF, which results 
in an analytical solution [2]: 
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Figure 2 compares the effects of pure diffusion with reaction-diffusion on the amplitudes of the 
Fourier coefficients.  As can be seen, pure diffusion causes a much faster degradation of the 
Fourier components than reaction-diffusion.  For example, if one is willing to allow a particular 
Fourier component to fall in amplitude by 20%, a reaction-diffusion system with no acid loss can 
tolerate about 50% more diffusion than a pure diffusion resist. 
 
 The above analysis is very helpful for understanding the role of diffusion in a simple 
reaction-diffusion system with no acid loss.  However, all serious chemically amplified resists 
include base quenchers – a beneficial source of acid loss.  For one special case the above analysis 
applies even when quencher is present.  If the acid-quencher reaction is very fast compared to 
diffusion (a very good assumption), and the base quencher has exactly the same diffusivity as the 
acid, then the initial acid concentration at the start of the PEB h(x,0) is simply reduced by the 
background quencher concentration.  (Note that for a Fourier series representation of the initial 
acid latent image such as equation (8), the impact of quencher is then just a reduction of the 
value of a0.)  Negative acid concentrations represent base quencher and both acid and base 
diffusion are properly calculated using the convolution of equation (2).  Of course, negative 
values of h*(x), the effective acid concentration, should be set to zero before performing any 
amplification calculations. 
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List of Figures 
 
Figure 1. A plot of the 1D reaction-diffusion point spread function (RDPSF), labeled as Total in the 

graph, as well as the two components that make of this function.  Both axes are scaled 
using the diffusion length, σD. 



 
Figure 2. Effect of diffusion on the latent image frequency components for a dense line, comparing 

pure diffusion (DPSF) to reaction diffusion (RDPSF). 
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Figure 1. A plot of the 1D reaction-diffusion point spread function (RDPSF), labeled as Total in the 

graph, as well as the two components that make of this function.  Both axes are scaled 
using the diffusion length, σD. 
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Figure 2. Effect of diffusion on the latent image frequency components for a dense line, comparing 

pure diffusion (DPSF) to reaction diffusion (RDPSF). 
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