The Octane data found in Data_Sets_2.xlsx shows how three different materials in the feed stock and a composite variable describing processing conditions affect the octane rating of refined gasoline. Since higher octane is worth a lot of money to a refinery, we wish to build a multiple regression model to predict resulting octane depending on feed stock composition and processing conditions.

1. Generate an OLS model with all main effects included. Perform standard regression diagnostics on this model. What can you conclude?

2. Next, generate a subset model with the least significant main effect excluded. Compare these two models using all of the model comparison tools we have learned. What can you conclude?

3. If your goal was to produce gasoline at an octane rating of 95, pick one set of operating conditions that would do so. Make sure that this operating condition set is within the scope of the model (that is, within the ranges for each variable used to build the model).
1. Generate an OLS model with all main effects included. Perform standard regression diagnostics on this model. What can you conclude?

Model:
\[\text{lm(formula = Octane ~ Material1 + Material2 + Material3 + Condition, data = octanedata)} \]

Residuals:

\[
\begin{array}{cccccc}
\text{Min} & 1Q & \text{Median} & 3Q & \text{Max} \\
-1.00612 & -0.28588 & -0.04679 & 0.32159 & 0.98069
\end{array}
\]

Coefficients:

\[
\begin{array}{ccccc}
\text{Estimate} & \text{Std. Error} & t value & \text{Pr(>|t|)} \\
(\text{Intercept}) & 95.853150 & 1.224877 & 78.255 & < 2e-16 \\
\text{Material1} & -0.092821 & 0.005235 & -17.729 & < 2e-16 \\
\text{Material2} & -0.126798 & 0.032157 & -3.943 & 0.000176 \\
\text{Material3} & -0.025381 & 0.013971 & -1.817 & 0.073160 \\
\text{Condition} & 1.967603 & 0.324573 & 6.062 & 4.65e-08
\end{array}
\]

Residual standard error: 0.4415 on 77 degrees of freedom
Multiple R-squared: 0.9056, Adjusted R-squared: 0.9007
F-statistic: 184.7 on 4 and 77 DF, p-value: < 2.2e-16

2.5 % 97.5 %

\[
\begin{array}{cc}
\text{(Intercept)} & 93.41410886 \ 98.29219160 \\
\text{Material1} & -0.10324577 \ -0.08239537 \\
\text{Material2} & -0.19083204 \ -0.06276466 \\
\text{Material3} & -0.05320054 \ 0.00243918 \\
\text{Condition} & 1.32129610 \ 2.61390984
\end{array}
\]

AIC = 105.4492 BIC = 119.8896
PRESS = 17.09105 Predictive R^2 = 0.8925193

Testing for Multicollinearity:
Correlation Matrix:

\[
\begin{array}{cccccc}
\text{Octane} & \text{Material1} & \text{Material2} & \text{Material3} & \text{Condition} \\
\text{Octane} & 1.0000000 & -0.8701592 & 0.3923593 & -0.6384901 & 0.6287297 \\
\text{Material1} & -0.8701592 & 1.0000000 & -0.5894513 & 0.4487330 & -0.3369172 \\
\text{Material2} & 0.3923593 & -0.5894513 & 1.0000000 & -0.2983958 & 0.1611956 \\
\text{Material3} & -0.6384901 & 0.4487330 & -0.2983958 & 1.0000000 & -0.7217482 \\
\text{Condition} & 0.6287297 & -0.3369172 & 0.1611956 & -0.7217482 & 1.0000000
\end{array}
\]

Eigenvalues:

\[
\begin{array}{c}
[1] 3.08903039 \ 1.05946720 \ 0.53554867 \ 0.26620139 \ 0.04975235
\end{array}
\]

Condition Number (is it large, > 100 or so?):

\[[1] \ 62.08814 \]

Variance Inflation Factors (>4=start worrying; >10=do something?):

\[
\begin{array}{cccccc}
\text{Material1} & \text{Material2} & \text{Material3} & \text{Condition} \\
1.762293 & 1.554770 & 2.346033 & 2.114003
\end{array}
\]

Is the mean VIF much bigger than 1?

mean VIF = 1.944275

Testing for Outliers:
Grubbs' Critical Value (alpha = 0.01) = 3.709667
Grubbs' test for one outlier using outlierTest from the car package:

No Studentized residuals with Bonferonni p < 0.05

Largest \(|rstudent|\):

\[
\begin{array}{ccc}
\text{rstudent} & \text{unadjusted p-value} & \text{Bonferonni p} \\
61 & -2.387102 & 0.019469 & NA \\
\end{array}
\]

Testing Externally Studentized Residuals (esr) for Normality:
(Small p-values mean we can reject the assumption of esr normality)

Skewness Z = 0.4448, p-value = 0.656452
Kurtosis Z = -0.7148, p-value = 0.4747441

Shapiro-Wilk normality test

data: esr
W = 0.98994, p-value = 0.7789

Testing Externally Studentized Residuals (esr) for Influence:

Cook's Distance cut-off (4/df) = 0.05194805
Maximum Cook's Distance = 0.09961329
 which occurs at index = 73
Maximum DFFITS = 0.7189754
 which occurs at index = 73
Intercept Maximum DFBETA = 0.5103312
 which occurs at index = 82
Material1 Maximum DFBETA = 0.002342116
 which occurs at index = 77
Material2 Maximum DFBETA = 0.01919062
 which occurs at index = 44
Material3 Maximum DFBETA = 0.006803743
 which occurs at index = 82
Condition Maximum DFBETA = 0.1359357
 which occurs at index = 82

Testing for Homoscedasticity:
(Data sorted by y-hat and split in half)
(Small p-value indicates heteroscedasticity)

Breusch-Pagan test from bptest, lmtest package:

 studentized Breusch-Pagan test

data: model
BP = 2.8947, df = 4, p-value = 0.5756

Barlett test from bartlett.test, stats package:

 Bartlett test of homogeneity of variances

data: esr_sorted and as.factor(group)
Bartlett's k-squared = 1.6749, df = 1, p-value = 0.1956

Brown-Forsythe test from levene.test, lawstat package:

 modified robust Brown-Forsythe Levene-type test based on the absolute deviations from the median
data: esr_sorted
Test Statistic = 1.3143, p-value = 0.255
From the graphs, the model appears appropriate with no obvious model error. The Grubbs test did not reveal an outlier at the 0.01 significance level. The skewness, kurtosis, and Shapiro-Wilk tests did not allow us to reject the assumption of normally distributed residuals ($\alpha = 0.05$). The Breusch-Pagan, Bartlett, and Brown-Forsythe tests could not reject the assumption of homoscedasticity at $\alpha = 0.05$. There were, however, several highly influential data points (two with leverage above 10) occurring at high octane values. No remediation is warranted, however. There is some multicollinearity in the model, but the condition number and variance inflation factors are not overly concerning.
2. Next, generate a subset model with the least significant main effect excluded. Compare these two models using all of the model comparison tools we have learned. What can you conclude?

The Material 3 model coefficient had a p-value of 0.073 and so could reasonably be considered statistically equivalent to zero. This term can be removed to create a subset model.

Model:
\[\text{lm(formula = Octane ~ Material1 + Material2 + Condition, data = octanedata)} \]

Residuals:
- Min 1Q Median 3Q Max
-0.93875 -0.27262 -0.05275 0.33081 1.04178

Coefficients:
- Estimate Std. Error t value Pr(>|t|)
- (Intercept) 93.898362 0.593786 158.135 < 2e-16
- Material1 -0.094775 0.005199 -18.231 < 2e-16
- Material2 -0.120409 0.032432 -3.713 0.000383
- Condition 2.369727 0.240857 9.839 2.58e-15

Residual standard error: 0.4479 on 78 degrees of freedom
Multiple R-squared: 0.9016, Adjusted R-squared: 0.8978
F-statistic: 238.2 on 3 and 78 DF, p-value: < 2.2e-16

2.5 % 97.5 %
(Intercept) 92.7162254 95.08049928
Material1 -0.1051253 -0.08442556
Material2 -0.1849769 -0.05584077
Condition 1.8902163 2.84923699

AIC = 106.8906 BIC = 118.9242
PRESS = 17.19044 Predictive R^2 = 0.8918943

For this subset model, all coefficients are statistically significant. The conclusions about outliers, normality, homoscedasticity, and influence are unchanged from the full model.

Comparing these two models using the Adjusted R^2, AIC, and BIC gives mixed results. The Adjusted R^2 and AIC show that the full model is better, but the BIC gives the nod to the subset model.

An ANOVA table was generated comparing the two models using a partial F-test (null hypothesis: the extra parameters in the full model have coefficients=0). A p-value of 0.073 means that we cannot reject the null hypothesis at an \(\alpha = 0.05 \) significance level (this was also
obvious from the studentized t-test of the model coefficient for Material 3, which has the same p-value since that is the only term that is different between the models).

Analysis of Variance Table

<p>| Model 1: Octane ~ Material1 + Material2 + Material3 + Condition |</p>
<table>
<thead>
<tr>
<th>Res.Df</th>
<th>RSS</th>
<th>Df</th>
<th>Sum of Sq</th>
<th>F</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>77</td>
<td>1</td>
<td>15.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>78</td>
<td>-1</td>
<td>15.649</td>
<td>-0.643</td>
<td>3.300</td>
</tr>
</tbody>
</table>

3. If your goal was to produce gasoline at an octane rating of 95, pick one set of operating conditions that would do so. Make sure that this operating condition set is within the scope of the model (that is, within the ranges for each variable used to build the model).

Using the subset model,

\[
\text{Octane} = 93.898 -0.094775\times\text{Material1} -0.120409\times\text{Material2} + 2.369727\times\text{Condition}
\]

The range of each parameter in the dataset is:

Material 1: 4.23 – 75.54
Material 2: 0.00 – 10.76
Condition: 1.19975 – 2.31909

Form the model we see that adding Material 1 and Material 2 reduces the octane from its intercept value of about 93.9, but higher condition increases the octane. Thus, let’s pick low values for materials 1 and 2, then find the condition value required to make the octane 95. Setting Material 1 to 20 and Material 2 to 5, a Condition of 1.52 produces an octane of 95. Of course, many other solutions are possible.

Note that using the subset model is roughly equivalent to setting the Material 3 amount to be zero in the full model.