A Digression on Statistical Tests

- There are two important characteristics of a statistical test:
 1. The significance level, \(\alpha \), is the probability of rejecting the null hypothesis when it is true (type I error).
 2. The power of the test \(1 - \beta \) is the probability of failing to reject the null hypothesis when it is false (type II error).

- We want high power (small \(\beta \)) and small \(\alpha \), but different tests have different powers for the same \(\alpha \).
- Higher sample size gives higher power.

Comparing Outlier Tests

- Consider a data set where the Dixon Q-test fails to identify the extreme data point as an outlier, but the Grubbs’ test does (for the same \(\alpha \)).
 - We don’t think of one test as being “right” and the other “wrong.”
 - If we reject the null hypothesis (call the data point an outlier), then we know that our type I error rate is \(< \alpha \) (which is set by us).
 - If we fail to reject the null hypothesis, it could be because our test has insufficient power (we don’t set the value of \(\beta \) directly).
- The Grubbs’ test has more power (given its assumptions are true), which is why we prefer it.

What to Do with an Outlier?

- When repeating the data analysis, there are many options of what to do with the outlier:
 - Delete the outlier.
 - Truncate (delete both the min and max data points).
 - Winsorize the outlier (set its value equal to its closest neighbor).
 - Replace the outlier with its expected value (from the Q-Q plot).
- Whether we delete, truncate, Winsorize, or replace the data depends on whether we identify the cause:
 - We always delete spurious data.
- In any case, document exactly what you did.

Three Types of Outlier Causation

- Case 1: You notice the problem before you detect the outlier:
 - E.g., a measurement tool breaks and must be repaired, you suspect calibration will be off.
- Case 2: You investigate after the outlier is observed and identify a cause:
 - Beware of just-so stories.
- Case 3: You never find a cause:
- Question: When do you report the existence of outliers in your data?
Is the Cause Important?

• Whether an outlier is important depends on the decision you are trying to make
 – Testing the accuracy of missiles, a few go way off course because of a software bug
 – Developing a measurement procedure, you are supplied with a degraded sample
• Spurious data vs. outlier depends on what is important to you

An Alternative

• An alternative to outlier rejection is robust estimation
 – Robust statistics have good performance for data drawn from a wide range of probability distributions, especially for distributions that are not normally distributed
 – More on robust estimation later
 – Bayesian approaches are also available
• In any case, it is always good to identify outliers for the lessons that can be learned
 – Further, outlier rejection can be thought of as a cheap version of robust estimation

Conclusions

• Tests for outliers and normality are related, since outliers result in non-normality
 – Most such tests are only useful when n > 20
• Typical testing sequence:
 – Graph the data as a histogram, boxplot, and Q-Q plot
 – Perform moment tests (skewness, then kurtosis)
 – If non-normality is detected, check for outliers (assuming a normal distribution can be justified)
 – If outliers are removed or adjusted, recheck for normality
 – If a non-normal distribution is suspected, use the empirical CDF to identify candidate distributions

Outlier Test Summary

• Testing for Normality (recommended)
 – Q-Q plots: is the normality assumption justified?
 – Skewness, kurtosis, etc.: Good for detecting the presence of outliers, but doesn’t identify which data are outliers
• Multiple of IQR (recommended)
 – Robust; useful for identifying potential outliers to test or investigate
• Chauvenet’s criterion
 – Simple; assumes normal distribution; arbitrary cut-off; not rigorous

Outlier Test Summary (2)

• Dixon Q-test
 – Most useful for small data sets; masking occurs with two or more outliers on same side of median
• Grubbs’ test (recommended)
 – Most common and rigorous for data assumed normal; simple for one or two outliers, but can be used iteratively to identify more
• Peirce’s criterion
 – Assumes normal distribution; can be used for any number of outliers; not rigorously studied for power and effectiveness

More Reading on Outliers

Lecture 19: What have we learned?

• Why should one focus on identifying the cause of an outlier?
• Name the four options for what to do with an outlier that can’t be ignored
• What is an important alternative to outlier testing and rejection?
• Describe the recommended testing sequence for outliers