

Primary vs. Alternate Model For exploratory work, we may not have a clear idea of what our model could be In some cases, we have a clear primary and alternate model in mind Simple case: one predictor variable, linear vs. quadratic models - Optimizing the design for linear (dumbbell design) means we are insensitive to quadratic variation - Optimizing for quadratic gives us reasonable

efficiency for a linear model

Chris Mack 2015

TEXAS

Optimal Design

- · For general multiple regression models, there are no simple designs that can be applied
- Optimal Design is an algorithmic approach for searching the design space and optimizing some statistical metric of the model
 - Non-optimal designs require a greater number of data points to estimate parameters with the same precision
 - The model must be specified ahead of time, as well as the range for each predictor variable
 - With multiple predictor variables, there can be tradeoffs between parameter variances

Chris Mack, 2015

Sample Where the Variation Is For non-constant variance, make number of replcates $n_i \propto \sigma_i^2$ · For curves, sample more in the step regions - Think about evenly spaced y-values rather than evenly spaced x-values © Chris Mack 2015

What to Optimize?

- A-optimality (average): minimize the average variance of the estimates of the regression coefficients
- C-optimality (combination): minimize the variance of a predetermined linear combination of model parameters
- D-optimality (determinant); maximize the determinant of the information matrix X^TX of the design
- E-optimality (eigenvalue): maximize the minimum eigenvalue of the information matrix
- T-optimality: maximize the trace of the information matrix
- G-optimality: minimize the maximum h_{ii} (hat matrix diagonal), minimizing the maximum variance of the predicted values
- I-optimality (integrated): minimize the average prediction variance over the design space
- V-optimality (variance): minimize the average prediction variance over a set of *m* specific points

Optimal Design Examples Linear and quadratic regression models with uncorrelated observations - D-optimal design is dumbbell for linear model and equal thirds for quadratic model Linear and quadratic regression models

- with highly correlated observations (an autoregressive error structure)
 - D-optimal design is close to equally spaced

Classic Blocking Example

- · I have a new shoe sole that I claim will last longer, but is otherwise identical to the existing sole
- I've recruited 100 volunteers to test the new versus old soles. What experimental design should I use?
 - Randomization: randomly assign half of the participants to wear the new shoes, and half to wear the old shoes
 - Blocking: every participant is given one shoe with the new sole and one with the old (randomly assigned to left or right foot)

Chris Mack. 2015

14

THE NEW MATERIAL STATES HERE CHANGES THE WORLD
Latin Square Design
 For the case of one primary variable and two nuisance variables (blocking variables) Graeco-Latin square design: 3 nuisance factors Hyper-Graeco-Latin square design: 4 nuisance factors
 The number of levels of each blocking variable must equal the number of levels of the primary variable
The Latin square model assumes that there are no interactions between variables
© Chris Mack, 2015 13

TEXAS				WHA	T STARTS HERE CHAN	GES THE WOR
	Lat	in Sq	uare	Desi	gn	
_						
• Exa add fou	ample: litive on r drivers	We tes emissi	t amou ions us	int of g sing fou	asolíne ir cars a	ind
• Exa add four	ample: litive on drivers	We tes emissi	t amou ions us _{Car 2}	int of g sing fou	asoline Ir cars a	ind
• Exa add four	ample: litive on drivers	We tes emissi Car 1	t amou ions us ^{Car 2} T2	Car 3	asoline Ir cars a	and
• Exa add four	ample: litive on drivers	We tes emissi Car 1 T1 T4	Car 2 T2 T3	Car 3 T4 T1	Car 4 T2	and
• Exa add fou	Itive on drivers	We tes emissi Car 1 T1 T4 T2	Car 2 T2 T3 T4	Car 3 T4 T1 T3	Car 4 T2 T1	and

4X4 Latin Square Design

© Chris Mack, 2015