Assumptions in OLS Regression

1. ε is a random variable that does not depend on x (i.e., the model is perfect, it properly accounts for the role of x in predicting y)
2. $E[\varepsilon] = 0$ (the population mean of the true residual is zero); this will always be true for a model with an intercept
3. All ε_i are independent of each other (uncorrelated for the population, but not for a sample)
4. All ε_i have the same probability density function (pdf), and thus the same variance (called homoscedasticity)
5. $\varepsilon \sim N(0, \sigma)$ (the residuals, and thus the y_i, are normally distributed)
6. The values of each x_i are known exactly

Uncertainty in X

- For most experiments, the predictor variable values (x_i) are themselves the results of measurements
 - All measurements have uncertainty (σ_x)
- If the uncertainty in each x_i has only a very small impact on the uncertainty in y_i, it may be OK to ignore it
 - For $\hat{y}_i = f(x_i)$, is $\sigma_{y_i} \gg \sigma_{x_i}$ for each i?

Example: Hubble Constant

- Edwin Hubble noted that the rate galaxies were moving away from us was proportional to their distance from us
 - Model: Velocity = $H_0 \times$ Distance
- He performed a linear regression to obtain the Hubble constant H_0
- But, most of the uncertainty in his data was in the x-variable!

Total Regression

- If X and Y have non-negligible uncertainty, we must find not only the predicted y values but the predicted x values as well (x and y are interchangeable)
 - Also called Errors-in-Variables regression or Measurement Error Modeling (W.A. Fuller, Measurement Error Models, Wiley, 2006)
 - We want values that minimize

 $$S = \sum_{i=1}^{n} \left(\frac{(\hat{y}_i - y_i)^2}{\sigma_{y_i}^2} + \frac{(\hat{x}_i - x_i)^2}{\sigma_{x_i}^2} \right)$$

 \hat{y}_i = predicted y value
 \hat{x}_i = predicted x value

 - Example: $\hat{y}_i = \beta_0 + \beta_1 x_i$
 - There are $n+2$ best fit parameters
 - Requires a nonlinear least-squares regression
Different Total Regression Approximations

- Effective Variance Approximation
- Orthogonal Regression
- Geometric Mean
- Method of Moments
- Deming Regression
- Full Total Regression

Interpreting Total Regression

- Structural Model
 - The X’s are fixed, but unknown, and so must be estimated
- Functional Model
 - The X’s are random variables, to be represented by their mean and standard deviation (pdf)
 - The difference between these two is subtle

Effective Variance Approximation

We can simplify the regression for the case of small errors in x:
- Let \(\hat{x}_i = x_i \)
- Define an effective variance in y using the model \(\hat{y}_i = f(x_i) \):
 \[
 \sigma_{y_i}^2 = \sigma_{y_i}^2 + \left(\frac{\partial f}{\partial x_i} \right)^2 \sigma_x^2
 \]
 - Use a weighted least-squares regression with weights \(w_i = 1/\sigma_{y_i}^2 \)
 - What value of \(\partial f / \partial x_i \) should we use?

Effective Variance Approximation

How to estimate the model slope (\(\partial f / \partial x_i \))?
1. Run a linear regression ignoring the x-variance
2. Use this model fit to calculate \(\partial f / \partial x_i \) for each i
3. Calculate the effective variance for each \(y_i \)
4. Run a weighted least-squares regression using 1/effective variance to weight the \(y_i \)
5. Repeated steps 2-4 until the parameters converge (usually only 1-2 iterations)

Improving the Effective Variance

- We can also improve our estimate of \(\hat{x}_i \)
 - For \(\hat{y}_i = f(x_i) \),
 \[
 \hat{x}_i = x_i + \frac{(y_i - \hat{y}_i) \left(\frac{\partial f}{\partial x_i} \right)^2 \sigma_y^2}{\frac{\partial f}{\partial x_i} \sigma_{y_i}^2}
 \]
 - Again, iterate and repeat the weighted linear regression, using the better estimates for \(\hat{x}_i \) (iteratively reweighted least squares)

Impact of Errors in Predictor Variables

- For a straight line model, errors in x will bias the OLS estimate of the slope towards zero
- For a higher order model, errors in x will look like heteroscedasticity
 \[
 \sigma_{y_i}^2 = \sigma_y^2 + \left(\frac{\partial f}{\partial x_i} \right)^2 \sigma_x^2
 \]
Lecture 30: What have we learned?

- When do I have to worry about error in the x-variable?
- What is total regression (also called errors-in-variables regression)?
- Explain the effective variance approximation
- How does x uncertainty affects our OLS slope estimate for a straight-line model?
- When does error in the x-variable result in heteroscedasticity?