Assumptions in OLS Regression

1. ϵ is a random variable that does not depend on x (i.e., the model is perfect, it properly accounts for the role of x in predicting y)
2. $E[\epsilon] = 0$ (the population mean of the true residual is zero); this will always be true for a model with an intercept
3. All ϵ are independent of each other (uncorrelated for the population, though not for a sample)
4. All ϵ have the same probability density function (pdf), and thus the same variance (called homoscedasticity)
5. $\epsilon \sim N(0, \sigma^2)$ (the residuals, and thus the y_i, are normally distributed)
6. The values of each x_i are known exactly

Residuals Are Not Independent

- Residuals are variation unexplained by the fitted model
- Assumption 3 (all residuals are independent of each other) is never true for a sample
 - Residuals depend on the fitted regression function, which depends on the same data that the residuals come from
 - With p fitting parameters, n residuals only have $n - p$ degrees of freedom
 - For n sufficiently large compared to p, we can ignore this dependence

Residuals in Sequence

- Other factors can prevent residual independence
 - Model error (usually a missing predictor variable)
 - Time dependence: sample aging, measurement drift
 - Spatial dependence: where the measurement was taken
- A run sequence plot shows the residuals in time sequence or other natural order to look for systematic variation
 - If time order corresponds to changing predictor values, the drift/aging may be hidden in the functional relationship
 - Randomization in experimental design prevents this
- A lag plot can make systematic variation more visible

Run Sequence Plots

- NBS measurements for a standard weight (Data Set 1)
- Intensity measurements for a chaotic laser (Data Set 1)
- Here, run number is the patient in sequence of measurement (Data Set 2). (The small number of data points makes any conclusions tentative.)
Lag Plots

• A plot of e_i versus e_{i-1} (when residuals are ordered in time or other natural sequence) helps to discover correlations between a residual and its preceding residual.

 A lag of n plots e_i versus e_{i-n}

NBS measurements for a standard weight (Data Set 1)

Michelson speed of light measurements (Data Set 1)

Correlated Residuals – Model Error

Heat Capacity (Data Set 2), where run number was from lowest to highest temperature

Linear Model

Parabolic Model

Runs Test – Is the Sequence Random?

• A random sequence of residuals will bounce back and forth between + and – according to a binomial distribution.

 Too many or two few bounces means the sequence is likely not random.

• We define a “run” as any sequence (one or more in length) on the same side of 0.

 Sequence: ++++-+++…..+++--

 This series has n_+ = 12, n_- = 8, and R = 10 runs

Runs Test

• For about thirty or more residuals, we can perform the following test (usually one-tailed to test for positive correlation):

 $R = \text{number of runs in the data}$

 $\hat{R} = \frac{2n_+n_- + 1}{n}$, $n = n_+ + n_-$

 $s_R = \sqrt{\frac{2n_+n_- (2n_+n_- - n)}{n^2 (n-1)}}$

 $Z_R = \frac{R - \hat{R}}{\frac{s_R}{\sqrt{n}}}$ is about normally distributed.

Note: $R \sim \binom{n}{\frac{n}{2}}$
Lecture 37: What have we learned?

• What can cause correlated (non-independent) residuals?
• Be able to generate and interpret a lag plot if the data sequence (order) is known
• Why is randomization of data order important in experimental design?
• What is a runs test and how is it performed?