Building a Model

- In general, we strive for **parsimony**
 - Find the simplest model consistent with the data and our knowledge of the problem
- If a simple model is not good enough, we can
 - Add more predictor variables
 - Add more complex functions of the predictor variables
 - Add interaction terms
- How do we know if the added terms are really helping, or just fitting the noise (overfitting)?
 - R^2 always improves when new model terms are added
 - We need something else to understand overfitting

Coefficient of Determination

- The Coefficient of Determination (R^2) is a measure of how much of the variation in Y is explained by the model
 - Regression Sum of Squares: $SSR = \sum (\hat{y}_i - \bar{y})^2$
 - Error Sum of Squares: $SSE = \sum (y_i - \hat{y}_i)^2$
 - Total Sum of Squares: $SSTO = \sum (y_i - \bar{y})^2$
 - $R^2 = \frac{SSR}{SSTO} = 1 - \frac{SSE}{SSTO}$ (for linear regression)

Adjusted Coefficient of Determination

- Adjust the SSE and SSTO by their degrees of freedom ($p = \#$ of adjustable model parameters)
 - $R^2_a = 1 - \frac{SSE/(n-p)}{SSTO/(n-1)} = 1 - \frac{MSE}{MSTO}$
 - $R_a^2 = R^2 - \frac{(p-1)}{(n-p)}(1 - R^2)$
- If adding a new model term makes R_a^2 smaller, that term is probably not needed

Information Criteria

- Generic Information Criterion (xIC)
 - $xIC = -2 \ln(L) + \text{complexity term}$
 - L = maximized likelihood, commonly returned by regression software
- We reward lower unexplained variance but penalize greater complexity
 - We try to lower the information criterion value

Log-Likelihood

- For iid normal errors,
 - $L = \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)^n \exp\left[-\frac{1}{2} \chi^2 \right]$
 - $\chi^2 = \sum_{i=1}^{n} \frac{\varepsilon_i^2}{\sigma^2}$
 - $-2 \ln L = \chi^2 + n\ln(2\pi\sigma^2)$
- But, $E[\chi^2] = n - p$
 - $E[-2 \ln L] = n - p + n\ln(2\pi\sigma^2)$
Information Criteria

• Akaike Information Criterion (AIC)
 \[AIC = -2 \ln(L) + 2p \]
 Complexity term

• Log-likelihoods are computed up to an additive constant
 Example: \[-2 \ln(L) = n + n \ln \left(\frac{SSE}{n} \right) + n \ln(2\pi) + \sum \ln(w_i) \]

• Schwarz's Bayesian Criterion (SBC or BIC)
 \[BIC = -2 \ln(L) + p \ln(n) \]

Comparing Models

• When comparing models with different numbers of parameters, the “goodness of fit” measure must penalize models with too many parameters

 \[R^2_a \text{ vs. AIC vs. BIC} \]

Results in larger p Results in smaller p
Most popular choice

Lecture 43: What have we learned?

• Why can't R^2 be used to compare models with different number of parameters?
• Explain the adjusted R^2 and how it is used
• What is an “information criterion” and how is it used?
• The use of which information criterion results in the most parsimonious model?