Robust Regression

- OLS: minimizing χ^2 (least squared errors) is not robust
 - Outliers or points from the tails of distributions are heavily weighted
 - b.p. = $1/n$; even one bad data point can make regression results meaningless
- We have discussed remedial measures for influential outliers and non-normal distributions, but they are not always effective for large amounts of contamination and not easy to automate
- An alternative: Robust Regression

Least Absolute Deviations

- Least Absolute Deviations (LAD):
 - Minimize $S = \sum |y_i - \hat{y}_i|
 - Weights outliers linearly, not quadratically
 - Absolute value sign is problematic since function is discontinuous at zero (linear programming required), and may not have a unique solution
 - LAD is the MLE if the residuals are independent and have the double-exponential distribution
 - For normal errors, $\text{SE}(b_k)$ is 26% bigger than OLS
 - Also called minimum L_1-norm regression

M-Estimation

- Define a general function of the residuals, $H(\epsilon_i)$, and then minimize $S = \sum H(\epsilon_i)$
 - For OLS, $H(\epsilon_i) = \epsilon_i^2$
 - The properties we want for the function H
 - Always non-negative, $H(\epsilon_i) \geq 0$
 - $H(0) = 0$
 - Symmetric, $H(-\epsilon_i) = H(\epsilon_i)$
 - Monotonic: if $|\epsilon_i| > |\epsilon_j|$ then $H(\epsilon_i) > H(\epsilon_j)$
 - Continuous derivative with respect to the coefficients (for numerical stability)
- Implement using iteratively reweighted LS

M-Estimation

- For least-squares regression: $S = \sum \epsilon_i^2$, take the derivative with respect to a parameter and set = 0
 $$\frac{\partial S}{\partial \beta_k} = 0 \rightarrow \sum_{i=1}^{n} \epsilon_i x_{ki} = 0$$
- For M-estimator,
 $$\frac{\partial S}{\partial \beta_k} = 0 \rightarrow \sum_{i=1}^{n} \frac{\partial H}{\partial \epsilon_i} x_{ki} = 0$$

M-Estimation

- Define a weight as $w_i = \frac{1}{\epsilon_i \frac{\partial H}{\partial \epsilon_i}}$
- Giving, $\sum_{i=1}^{n} \frac{\partial H}{\partial \epsilon_i} x_{ki} = 0 \rightarrow \sum_{i=1}^{n} w_i \epsilon_i x_{ki}$
 - But this is just weighted linear regression!
 - Guess the weights, fit, then calculate the residuals. Use those residuals to calculate new weights. Repeat until convergence.
 - Called iteratively reweighted Least Squares
Huber M-Estimator

- The Huber M-estimator attempts to get the best of both the least-square estimator (easy to find the minimum) and the absolute deviation estimator (more robust)
 \[H(\varepsilon) = \begin{cases} \varepsilon^2/2 & \text{for } |\varepsilon| \leq k \\ k|\varepsilon| - k^2/2 & \text{for } |\varepsilon| > k \end{cases} \]
- Huber picked \(k = 1.345s \), which gives 95% efficiency (almost the same as OLS)
- The residuals are studentized using MAD

Bisquare M-Estimator

\[B(\varepsilon) = \begin{cases} k^2/6(1 - [\varepsilon/k]^2)^2 & \text{for } |\varepsilon| \leq k \\ k^2/6 & \text{for } |\varepsilon| > k \end{cases} \]

M-Estimator Robustness

- The bisquare estimator is popular, but can suffer from local minima
 - The Huber M-estimator gives a unique solution and is often used to provide a starting point for the bisquare estimator
- Both M-estimators and LAD can tolerate large deviations in Y, so long as they are not overly influential (that is, they don’t have large deviations in X)
- Robust estimators make good outlier detectors

Least Trimmed Squares
- Deletes some percentage of the most extreme residuals (up to half), then performs OLS on the rest
- Does not work well for small sample sizes
- Of course, the extreme cases may be very important!

Least Median Squares
- Minimizes the median of the squared residuals
- Very robust, but very low efficiency
Lecture 56: What have we learned?

• What is the breakdown point for OLS?
• Explain the basic operation of M-estimators for linear regression
• What are some of the difficulties and complications for robust regression?
• How do you choose among the robust regression options?