Comparison of Scalar and Vector Modeling of
Image Formation in Photoresist

Chris A. Mack, FINLE Technologies, Inc.
Ching-Bo Juang, The University of Texas at Austin*

* present address: Silicon Valley Group, Austin, TX

Abstract

A comparison is made between several scalar models for the formation of an image
in a photoresist film with differing approximations and a vector model. It was found
that up to numerical apertures of 0.7, a full scalar model showed no appreciable
deviation from the vector model. However, when several common assumptions were
made to simplify the scalar model, significant errors resulted at the higher numerical
apertures.
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l. Introduction

Since the first description of lithographic image formation in mathematical terms,
lithographers have grappled with the tradeoffs between the ease and speed of simple calculations
and the accuracy of more complex calculations. Modeling of the formation of an image and the
propagation of that image into photoresist can range from scalar diffraction theory with a variety of
approximations to full vector diffraction theory. Recent work has shown that complex vector
diffraction theory can be applied to the problem of lithographic image formation, but at a heavy cost
in terms of the complexity of the model and the speed of execution. There has been little work,
however, in determining the need for such complexity. In particular, if vector theory provides more
accurate results at high numerical apertures, at what numerical aperture would the use of vector
models become necessary? What other conditions might necessitate the use of a vector image
model?

In this paper, several scalar models, with a variety of approximations, will be compared with
a vector model. In a two-dimensional case, the goal is to determine the intensity of light everywhere
within the photoresist, I(x,z). A full scalar solution is quite accurate in most cases, but usually the
“scalar” models used in most studies make one or more approximations to simplify and speed the
calculations. First, each of several approximations to a full scalar model of lithographic exposure
will be explained. Then, each model will be compared under several conditions of feature size and
numerical aperture to determine which models are accurate under what conditions.
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Description of the Models

It is not sufficient to describe a lithography imaging model as being simply “scalar” or
“vector.” Within these broad categories there are a number of different approximations that can be
made to simplify the calculations. Several of these approximations are described below.

Zero Order Scalar Model

The lithography simulator SAMPLE [1] and the 1985 version of PROLITH [2] used the
simple imaging approximation first proposed by Dill [3] to calculate the propagation of an aerial
image in photoresist. First, an aerial image Ji(x) is calculated as if projected into air (x being along
the surface of the wafer and perpendicular to the propagation direction of the image). Second, a
standing wave intensity /(z) is calculated assuming a plane wave of light is normally incident on the
photoresist coated substrate (where z is defined as zero at the top of the resist and is positive going
into the resist). Then, it is assumed that the actual intensity within the resist film I(x,z) can be
approximated by

I(x,2) = I;(x)I(2) ey

For very low numerical apertures and reasonably thin photoresists, these approximations are valid.
They begin to fail when the aerial image changes as it propagates through the resist (i.e., it
defocuses) or when the light entering the resist is appreciably non-normal.

First Order Correction to the Scalar Model

The first attempt to correct one of the deficiencies of the zero order model was made by the
author [4], and later by Bernard [S]. The aerial image, while propagating through the resist, is
continuously changing focus. Thus, even in air, the aerial image is a function of both x and z. An
aerial image simulator calculates images as a function of x and the distance from the plane of best
focus, 8. Letting d, be the defocus distance of the image at the top of the photoresist, the defocus
within the photoresist at any position z is given by

8(z) = 8, + § ®)

where n is the real part of the index of refraction of the photoresist. The intensity within the resist is
then given by

I(x,2) = I;(x,8(2)) I5(2) 3)
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Here the assumption of normally incident plane waves is still used when calculating the standing
wave intensity. This approximate form of the scalar model is known as the “Standard Model” in the
lithography simulator PROLITH/2.

Second Order Correction to the Scalar Model

The light propagating through the resist can be thought of as various plane waves traveling
through the resist in different directions. Consider first the propagation of the light in the absence of
diffraction by a mask pattern (that is, exposure of the resist by a large open area). The spatial
dimensions of the light source determine the characteristics of the light entering the photoresist. For
the simple case of a coherent point source of illumination centered on the optical axis, the light
traveling into the photoresist would be the normally incident plane wave used in the calculations
presented above. The standing wave intensity within the resist can be determined analytically [6] as
the square of the magnitude of the electric field given by

—i2nn,z/ A 2
T12E; (e T +pytpe

1+ p1apatsh

l.ZTUlzZ/A. )
E(z)=

Q)

where the subscripts 1, 2, and 3 refer to air, the photoresist and the substrate, respectively, D is the
resist thickness, E is the incident electrical field, A is the wavelength, and where

complex index of refraction of film j: nj=n;—iK;
- . s 2n;
transmission coefficient from i to j: TjE
n; +n j
. . . n;—n,
reflection coefficient from i to j: Py =
n; +n j
internal transmittance of the resist: Tp= g2y DI

The above expression can be easily modified for the case of non-normally incident plane
waves. Suppose a plane wave is incident on the resist film at some angle 6;. The angle of the plane
wave inside the resist will be 0, as determined from Snell’s law. An analysis of the propagation of
this plane wave within the resist will give an expression similar to equation (4) but with the position
z replaced with zcos9,.

T1202)E, (e_izmzzcosezm + 923(92)t20(92)€i2“"22°°592/)‘)

1+p1202)p2302)TH®))

E(Z,e 2 ) = (5)

The transmission and reflection coefficients are now functions of the angle of incidence and are
given by the Fresnel formulas. They are also a function of the polarization of the incident light. For
the typical unpolarized case, the light entering the resist will become polarized (but only slightly).
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Thus, a separate standing wave can be calculated for each polarization and the resulting intensities
summed to give the total intensity. A similar approach was taken by Bernard and Urbach [7].
Notice that by using a more accurate scalar model, vector effects such as polarization within the
resist film still come into play.

By calculating the standing wave intensity at one incident angle 0, to give I(z,0;), the full
standing wave intensity can be determined by integrating over all angles. Each incident angle
comes from a given point in the illumination source, so that integration over angles is the same as
integration over the source. Thus, the effect of partial coherence on the standing waves is accounted
for. Note that the effect of the non-normal incidence is included only with respect to the zero order
light (the light which is not diffracted by the mask). This form of the scalar imaging problem is
known as the “High NA Scalar” model in PROLITH/2.

Full Scalar Model

The above method for calculating the image intensity within the resist still makes the
assumption of separability, that an aerial image and a standing wave intensity can be calculated
independently and then multiplied together to give the total intensity. This assumption is not
required. Instead, one could calculate the full /(x,z) at once making only the standard scalar
approximation. The formation of the image can be described as the summation of plane waves. For
coherent illumination, each diffraction order gives one plane wave propagating into the resist.
Interference between the zero order and the higher orders produces the desired image. Each point in
the illumination source will produce another image which will add incoherently (i.e., intensities will
add) to give the total image. Equation (5) describes the propagation of a plane wave in a stratified
media at any arbitrary angle. By applying this equation to each diffraction order, an exact scalar
representation of the full intensity within the resist is obtained.

Other Issues in Scalar Modeling

Besides the basic modeling approaches described above, there are two issues which apply to
any model. First, the effects of defocus are taken into account by describing defocus as a phase
error at the pupil plane. Essentially, if the curvature of the wavefront exiting the objective lens
pupil is such that it focuses in the wrong place (i.e., not where you want it), one can consider the
wavefront curvature to be wrong. Simple geometry then relates the optical path difference (OPD) of
the actual wavefront from the desired wavefront as a function of the angle of the light exiting the

lens, 6.
OPD®) = 8(1—cos0) (6)

Computation of the imaging usually involves a change in variables where the main variable used is
sin@. Thus, the cosine adds some algebraic complexity to the calculations. For this reason, it is
common in optics texts to simplify the OPD function for small angles (i.e., low numerical
apertures).
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OPD@®) = 8(1-cos0) = %Sinze (7

Again, the approximation is not necessary, and is only made to simplify the resulting equations. In
this work, the approximate defocus expression is used for the zero order model and the first order
correction. The second order correction and the full scalar model use the exact defocus expression.

Reduction in the imaging system adds an interesting complication. Light entering the
objective lens will leave the lens with no loss in energy (the lossless lens assumption). However, if
there is reduction in the lens, the intensity of the light entering will be different from that leaving
since the intensity is the energy spread over a changing area. The result is a radiometric correction
well known in optics [8] and first applied to lithography by Cole and Barouch [9]. In this work, the
radiometric correction is applied in the second order correction and the full scalar models.

Vector Model

Light is an electromagnetic wave which can be described by time-varying electric and
magnetic field vectors. In lithography, the materials used are generally non-magnetic so that only
the electric field is of interest. The electric field vector is described by its three vector components.
Maxwell’s equations, sometimes put into the form of the wave equation, govern the propagation of
the electric field vector. The scalar approximation assumes that each of the three components of
the electric field vector can be treated separately as scalar quantities and each scalar electric field
component must individually satisfy the wave equation.

The scalar approximation is commonly used throughout optics and is known to be accurate
under many conditions. There is one simple situation, however, in which the scalar approximation
is not adequate. Consider the interference of two plane waves traveling past each other. If each
plane wave is treated as a vector, they will interfere only if there is some overlap in their electric
field vectors. If the vectors are parallel, there will be complete interference. If, however, their
electric fields are at right angles to each other there will be no interference. The scalar
approximation essentially assumes that the electric field vectors are always parallel and will always
give complete interference. This situation comes into play in lithography when considering the
propagation of plane waves traveling through the resist at large angles. Reflection of a plane wave
from the substrate will give two plane waves traveling past each other at some angle. For large
angles, the scalar approximation may fail to account for these vector effects.

For this work, the vector model technique of Flagello [10] was used. The software used to
perform the vector solution was developed by Tim Brunner of IBM and is used here to compare
with the various forms of the scalar model. Note that the Flagello/Brunner model accounts for
vector propagation of the light in the photoresist, but uses scalar theory to describe diffraction by the
mask, and the behavior of the imaging lens. Also, this software does not take into account any
changes in the optical properties of the photoresist during exposure (i.e., bleaching). Both polarized
or unpolarized illumination can be modeled.
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Comparison of Models

There is a wide number of possible conditions that could be explored to look for differences
between the various imaging models. Here, only a small number of representative conditions will
be studied. In particular, i-line (365 nm) imaging of 0.35 and 0.50 um equal lines and spaces with
numerical apertures of 0.5, 0.6 and 0.7 will be simulated through focus. Unpolarized illumination is
assumed. The complete set of modeling parameters is shown in Table I. All of the models
described above will be compared with the exception of the zero order model, since the inaccuracies
of this model are already well known.

‘Table I. PROLITH/2 input parameters

Imaging Tool: CEL or Top ARC:
Wavelength =365.0 nm Not Used
Bandwidth= 0.0 nm Intermediate Layers: Polysilicon on oxide

Numerical Aperture = 0.5, 0.6 and 0.7 Substrate: Silicon
Reduction Ratio= 5.0

Image Flare = 0.00 Resist System: Positive

Aberrations: None Thickness = 0.800 pm

Partial Coherence = .50 Absorption Parameter A = 0.00 1/um
Linewidth = 0.35 and 0.50 pm Absorption Parameter B = 0.50 1/um
Pitch = 2*width Rate Constant C = 0.0160 cm?*/mJ
Mask Bias = 0.0 pm Refractive Index = 1.755

Focal Position = -0.30 um Development Model: Original Mack

Max Develop Rate = 100.0 nm/s
Min Develop Rate = 0.10 nm/s

Exposure Energy = 160 mJ/cm® Threshold M = -100.
PEB Diffusion length = 60.0 nm Selectivity Parametern= 5.00
Development Time = 60.0 sec Relative Surface Rate = 0.10

Inhibition Depth = 0.10 um

Figure 1 begins by comparing resist profiles at two extremes of focus (the in-focus profiles
show the least variation among the models and so are not shown here). Several points can be made.
First, all of the models shown exhibit the same asymmetry with focus. The simplest model, the first
order correction (standard model) which accounts for defocusing within the resist, is sufficient to
explain this basic phenomenon. The asymmetry certainly worsens for larger numerical apertures.
Comparing the different models, one sees in all cases the greatest difference between the standard
and the high NA scalar models. There is a smaller but noticeable difference between the high NA
and full scalar models. There appears to be very little difference between the full scalar and the
vector models. As one would expect, the differences between the models becomes more
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pronounced at higher numerical apertures. There seems to be neither more nor less differences
between the models for the 0.5 pum versus the 0.35 um feature sizes.

Figure 2 expands on this data by showing linewidth versus focus results for the different
models at different numerical apertures. Even at a numerical aperture of 0.5 there is a noticeable
difference between the standard and the high NA scalar models. Interestingly, the difference
resembles a difference in dose, indicating that the inclusion of the full angular range of the incident
light reduces the swing curve effect and changes the amount of energy coupled into the resist. At
numerical apertures of 0.5 and 0.6, the differences between the high NA scalar and full scalar
models are not great, but the high NA scalar model does underestimate the focus latitude on the
negative side of focus (focal plane position below the top surface of the resist). At a numerical
aperture of 0.7, the high NA scalar model results begin to deviate from the full scalar model at
positive focus. For all numerical apertures, the full scalar model and the vector model show very
little difference.

Conclusions

The differences between “scalar” and “vector” models are impossible to judge without a
thorough understanding of the assumptions made in each model. In fact, at numerical apertures up
to, and probably beyond, 0.7 variations among the scalar models with different assumptions far
exceed any error caused by making the scalar approximation. For the cases studied in this paper,
there were only insignificant differences between the full scalar and vector models at numerical
apertures up to 0.7. There were, however, significant differences between the various scalar models.
The standard model gives qualitative agreement with the high NA asymmetries found in the other
models, but begins to show quantitative differences at numerical apertures above 0.5. The high NA
scalar model is more accurate and shows good results up to numerical apertures of about 0.6. In all
cases, the differences between models look like differences in dose and result from improved
accounting of the influence of NA on thin film interference effects.

Further work in this area should certainly be undertaken. More numerical apertures, both
higher and lower, should be studied. Full focus-exposure process windows should be calculated and
compared. Further, the results presented here indicate that the proper inclusion of high angles in the
scalar model is needed for accurate results. Thus, one would suspect that off-axis illumination
imaging would be affected substantially. Further work should include a wide range of off-axis
illumination and phase-shifting mask cases and should study swing curve effects explicitly.
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Figure 1a. Comparison of models for 0.5 um lines and spaces with NA = 0.5, i-line, o = 0.5.
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Figure 1b. Comparison of models for 0.5 um lines and spaces with NA = 0.6, i-line, 6 = 0.5.
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NA =0.7 Focus =-1.0 pym Focus = 0.6 pm
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Figure 1c. Comparison of models for 0.5 um lines and spaces with NA = 0.7, i-line, 6 = 0.5.
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NA =0.6 Focus =-0.6 um Focus = 0.2 um
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Figure 1d. Comparison of models for 0.35 um lines and spaces with NA = 0.6, i-line, 6 = 0.5.
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NA =0.7 Focus = -0.6 um Focus = 0.2 pm
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Figure 1e. Comparison of models for 0.35 um lines and spaces with NA = 0.7, i-line, 6 = 0.5.
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Figure 2. Comparison of image models for an i-line process with NA of (a) 0.5, (b) 0.6, and (c) 0.7.
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