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Abstract

A method of obtaining rigorous solutions to Maxwell’s equations for the transmission of light through a
photomask, both chrome-based and phase-shifting, is presented. The electromagnetic simulator will predict the
transmission of light through the mask taking into account material properties, width, and thickness of the
structures on the mask. This electromagnetic simulation will then be incorporated into the software package
PROLITH/2 for complete simulation down to the resist level. Examples of lithography simulation using these
rigorous solutions will be presented.

Keywords: Maxwell’s equations, Kirchhoff approximation, lithography simulation, absorbing boundary
conditions.

1. Introduction

1.1. Need for simulation

Lithography simulation, including the calculation of the projected image of a photomask pattern onto a resist
coated wafer, has become an indispensable tool for lithography research, development and manufacturing. Much
work recently has centered on the improvement of the accuracy of these models for smaller features at higher
numerical apertures. In particular, vector treatment of the electromagnetic field propagating through the resist is
now common. However, typical reduction factors of 4 - 5X mean that mask features are relatively large
compared to the wavelength of the imaging light. As a result, the use of scalar approximations on the mask side
of the imaging problem are quite common. In other words, when the smallest feature size on the mask is much
larger than A, the Kirchhoff approximation, which treats the mask as a thin plane with geometric transmission,
provides sufficient accuracy. When this is not the case, it becomes essential that the material composition and
actual physical dimensions of the mask are taken in to account via a rigorous solution to Maxwell’s equations.

In PROLITH/2, the electric field distribution in the neighborhood of the wafer plane, defocused by a distance
y, is computed via the following (scalar) expression':

E(x.y)= [ df, M(£)P(f)exsli2n(fx+ £,)] (L1)

where
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e VA= |fs1/A, (12)
R AT VAP VU
M(f,)= [ax E(x' 0% )exp(-i2nf, %), (13)

A is the vacuum wavelength of the (monochromatic) radiation, E (x’,O*) is the field just below the mask, f, is the

spatial frequency coordinate in the pupil plane, and P(f,) represents the pupil function of the lens and contains

all the information about the finite size of the exit pupil and all possible wavefront aberrations in the objective.
The quantity y in Eq. (1.1) is the amount of defocus when the coordinate system is centered at the geometrical
focus (assumed to lie on the optical axis) because, in optical lithography, the objective lens is assumed to be
image-side telecentric (i.e., its exit pupil is at infinity). Also note that the branch of the square root in Eq. (1.2) is
chosen so that this electric field satisfies radiation boundary conditions at infinity; that is, there is no inward-
propagating field coming from outside the optical system.

Within the assumptions just outlined, and assuming the light incident on the mask is unpolarized, the field
expression in Eq. (1.1) is exact in that it satisfies the wave equation, as long as the value of the field just behind

the mask, E(x’,O*), is chosen correctly. The most natural assumption to make is that the field in that plane

simply takes the value
E(x’07)=m(x). (1.4)

where m(x’) is the ideal amplitude transmittance of the mask. Eq. (1.4) is a form of the Kirchhoff

approximation®. It is well known® that, when the smallest feature on the mask D, and the distance between the

plane of observation and the mask are larger than A, Eq. (1.4) provides an accurate estimate of the field to within
an error of the order of A/ D, . Furthermore, Eq. (1.1) is easily computed, as all integrals are simply Fourier

transform relations.

There are cases in optical lithography, however, where the size of the smallest feature of the mask is of the
order of A; in such instances, Eq. (1.4) is no longer accurate. This can be found, for example, in phase-shifting

masks, optical-proximity correcting masks, and 1:1 projection lithography. The initial field E(x’,O*) must then

be determined through the rigorous boundary conditions from Maxwell’s equations. For the general planar
structures that make up the masks of interest in projection lithography, an exact analytical expression for this
initial field distribution is out of the question. Therefore, an efficient, robust numerical method is necessary to
find this field and, ultimately, to decide precisely at what point the Kirchhoff approximation becomes
unacceptable.

1.2. Goals of this paper

Much research in determining the effects of mask topography on the aerial image has been carried out in
recent years*>*"®, The goal of this paper is twofold: to find examples where the Kirchhoff approximation is no
longer valid and to analyze the effects of mask topography within the PROLITH™ simulation environment. The
examples to be considered here will take their cues from optical proximity correction and phase-shifting masks.
In Section 2, a brief review of the governing equations and boundary conditions is presented. An outline of the
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numerical technique we chose to implement for the solution to these equations, the finite-difference time-domain
method, is also given. A comparison with the exact solution of the perfectly conducting half-plane will provide a
preliminary evaluation of this algorithm. The main result of these computations is a modified transmittance
function for the mask. The transmittance function is then integrated into PROLITH/2, and this is discussed in
Section 3. Comparison with the Kirchhoff approximation is discussed in Section 4 through several examples
taken from typical masks.

2. Theory

2.1. Maxwell’s equations

The vector nature of the electromagnetic field is defined by Maxwell’s equations, and these equations are
written as follows (in MKS units):

VxE+iB=O, 2.1
ot
0

VxH-—D=], (2.2)
ot

and, for the linear, isotropic media considered here, the following equations are satisfied:

D=¢E, (2.3)
B=uH, (2.4)
J=0E. (2.5)

Here, € is the permittivity, u is the permeability, and o is the conductivity of the material in which the
electromagnetic disturbance is taking place. [The complex index of refraction for a time-harmonic disturbance is

then given by’ n® =&u/ eu, +i O’,Uﬂ/(Zﬂ' Eoldo ), where A is the wavelength of the disturbance.] In this paper,
only the fields E and H are of concern. For wave propagation in the general, isotropic case, there are then 6

coupled equations to consider. Also note that, in the absence of any sources, both the electric and magnetic fields
E and H satisfy the vector wave equation independently.

A major simplification is possible when one can neglect the variation of the fields in one of the transverse
directions [the Z direction in this paper]. In this case, it turns out that a disturbance with an arbitrary polarization
— which, in general, is represented by a set of 6 scalar fields - can be expressed as a linear combination of 2 sets of
3 scalar fields'®. Each of these sets has an orthogonal polarization with respect to the other basis. The equations
satisfied by the fields in these bases, taking into account the linearity of the media expressed in Egs. (2.3), (2.4)
and (2.5) are as follows:

E-polarization: (HJt JH, EZ)

U—H, =-—E,, (2.6)
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po-H,==E,, 2.7)
.9%EZ +0E, =58;Hy _ain*' (2.3)
H-polarization: (EX E,, Hz)
8—8% E. +0E, :-a%HZ s 2.9
e%Ey +0E, :a—in, (2.10)
,U%HZ=%EX—a—axEy. (2.11)

Note that E-polarization implies that the electric field has only a z-component, while all others are zero, and
similarly for H-polarization. To find the scattered field for an arbitrarily polarized incident field, one simply
decomposes the polarization into the above basis. The fields in each basis set can then be found separately for
any scattering problem. For the remainder of this paper, only E-polarization will be considered.

Note that, for most materials of interest in lithography, u =g, and it will be assumed that this is true

throughout the paper. Therefore, given a complex index of refraction, we can uniquely find the relative
permittivity and the conductivity without any additional information.

2.2. Boundary Conditions

2.2.1. At a discontinuity

Of interest is the behavior of the field in the neighborhood of an interface. By analyzing Maxwell’s
equations in a small region about the discontinuity surface, one can deduce the following relations between the
fields on either side of the interface of interest:

[y <E], -[yxE]_=0, 2.12)
[¥xH], -[yxH] =], (2.13)

where the § direction points from the “-*“ to the “+” side of the interface, and J represents the surface current

density at the interface. For E-polarization, Eqs. (2.12) and (2.13) are conditions for E, and H,, while they are
conditions for E, and H, for H-polarization. Thus, the tangential component of the electric field is continuous at
an interface, while that for the magnetic field is discontinuous.

Note that Egs. (2.6) - (2.11) allow for the special case of a perfectly conducting material. Such a case
corresponds to having ¢ =0, and, by the continuity of the tangential electric field E.,, Egs. (2.8) and (2.9) would
imply that E,,, = 0, as expected from Eq. (2.12). [Note that the normal component of the electric field in Eq.
(2.10) does not satisfy this relation because it is not continuous across the discontinuity.] This case will prove of
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great importance in verifying that the numerical routine used here is correct, as one of the few known rigorous
analytical solutions to the problem of electromagnetic diffraction by an aperture requires an infinitely thin,
perfectly conducting screen.

In all other cases, an exact analytical solution is presently beyond our means. Since the quantities in Egs.
(2.12) and (2.13) are unknown in general, the boundary conditions become extremely difficult to implement.
There has been much literature written about using tractable approximations to these boundary conditions in
special cases to find closed-form approximations to the scattered fields ''. Although such approximations may
prove useful in crosschecking the solutions obtained from numerical methods, their discussion is beyond the
scope of this paper.

2.2.2. At Infinity

As mentioned in the Introduction, the behavior of the electric field far from the media must be specified in
order to be guaranteed a unique field everywhere in the domain of interest. The behavior sought in radiation
problems is that the field in the far zone must ultimately behave as a pure outgoing wave uniformly over angle "%
It has been shown that such a requirement in the 2D case leads to an asymptotic expansion for each scattered field

component E®)(r) [defined to be the total field minus the incident field] of the form"?

EV(r) ~ HY (k)X rF,(6) + HO(kr) X7 7"G,(6). 2.14)

n=0 n=1

In principle, one could use this “pseudo-boundary condition” to find a unique, or asymptotic, expression for the
electromagnetic field due to a scattering object. Because of the intractable form of the boundary conditions,
however, a numerical scheme is sought here, and a more general treatment of these far-zone conditions is to be
employed. Before such conditions are discussed, the numerics must first be mapped out.

2.3. The Finite-Difference Time-Domain Method

The numerical method of choice here is known as the Finite-Difference Time-Domain (FDTD) method. It
turns out that this method is ideally suited to the rectangular geometries that are natural in mask topography. The
principle is simple: replace the time and space derivatives in Maxwell’s equations by their discrete analogs and
update the equations in time. On the other hand, the choices of discrete analogs (e.g., forward difference,
backward difference, etc.) and spatial and temporal sampling is crucial in determining stability, run time, and
storage.

The sampling scheme used here follows a grid of so called “Yee cells”', which is simply the result of using

a centered-differencing scheme for both the spatial and temporal derivatives. The immediate advantage of
centered-differencing is in its order doubling: if the sampling distance is a small number #, then while the error

in using forward- or backward-differences is O(k), that for using centered-differencing is O(hz). More

importantly, and less obviously, is the fact that forward-differencing is unconditionally unstable, while centered-
differencing is stable, subject to the Courant condition':

1>11

2 + , (2.15)
AT* AP AP
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where 7= ct, c is the vacuum speed of light, A7 is the distance light travels in one time step, and Ax and Ay
represent the cell spacings in the numerical grid. Such centered differencing leads to a pattern of interwoven
electric and magnetic field values on a computational grid.

Let the grid dimensions be [—X,X]x[—Y,Y] ,andlet x=-X + jAx, y=Y—-kAy, and 7=nAr7. Egs. (2.6)
to (2.8) then take the discrete form:

H (jk+1/2,n+1/2)=H (jk+1/2,n—1/2)—- /%%[Ez(j,k+1,n)—EZ(j,k,n)], (2.16)
o &Y
. . g, AT . .
H,(j+1/2,k,n+1/2)=H (j+1/2,k,n~1/2)+ ;—E[EZ(]+I,k,n)—EZ(],k,n)], 2.17)
0
E (j.k,n+1)=BE(j, k,n)
+7{%[Hy(j+l/2,k,n—1/2)—Hx(j—1/2,k,n—1/2)] (2.18)
At . .
—A—[Hx(],k+1/2,n—1/2)—Hx(],k—1/2,n—1/2)]}
y

where 5=((¢/ &)y, / tg ~ 0 AT/ 2)/[(e] o)ey / fy +0A712] and v =[(e/ & e I tto +oAr/2]‘1.

The stability of this scheme is easily tested by algebraically propagating a typical mode of the form
& exp[—i(27z'/ /1)( jp.Ax+kp, Ay +nAr)], where p, and p, represent direction cosines of this mode. [This is

known as Von Neumann analysis.] It turns out that, when the condition
2
INANG At . (7p,A 1
(——T) smz(ﬂ)+ L L P (2.19)
Ax A Ay A Ny

Ren>Imn, (2.20)

is satisfied, and

then 0< S<1 and the mode amplitude is |§] = \/E <1, so that the scheme is stable, as asserted above. If these

conditions are not satisfied, then the scheme is unstable. Eq. (2.19) might seem to be a generalization of the
Courant condition in Eq. (2.15), but because the direction cosines are unknown and can take on any value, and we
typically have at least one non-lossy material present in our model, this condition simply reduces to the latter
condition. Eq. (2.20) has been previously derived by Wong and Neureuther'®; this result severely impacts the
types of lossy media that can be simulated with the FDTD algorithm in the present form.

2.4. Radiating Boundary Conditions

Eqgs. (2.16)-(2.18) provide for the simulation of the governing differential equations for the scattered fields as
well as the boundary conditions in the neighborhood of each interface. [Those boundary conditions are a
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consequence of considering Maxwell’s equations near the interface, a job naturally done by the discrete
equations.] The main difficulty comes from the edge of the grid, where purely outgoing waves need to be
simulated. In principle, the simplest way to proceed would be to fix the spatial component of the field at the grid
to take values asserted by the asymptotic expansion in Eq. (2.14). For a general-purpose field solver, however,
evaluating the necessary coefficients for each mask is not an option at present.

The simplest method of imposing these radiating boundary conditions at the edge of the grid is to use
approximate absorbing boundary conditions'’. At the edge of the grid, far from any conducting media, the field
(electric or magnetic) satisfies the wave equation:

0’ N 0 €0
ox*> * g 0t

2]E(x,y,z‘) =0. (2.21)

The operator acting on the field can be “factored” in such a way as to stress the fact that the wave equation gives
rise to both incoming and outgoing waves:

2 2 2 2
[a+ L Jla _é‘__a__ﬁ?}E(x,y,f)ﬂ, (2.22)

y Ve o ox®

[The factoring was done this way because, in most cases here, we are considering the grid edge normal to §.] At
the edge y =Y, it is desired that all scattered waves with components in the —§ direction be absorbed. In this
case, defining E=E"Y + EY), where the (i) denotes incident field and the (s) scattered field, the absorbing

boundary condition at this edge would become

[ d +\/Ei\/1—s2 ][E(‘)(x,y,z')] =0, (2.23)

B_y g, 0T =Y

where s= (8/ ax)/ (8/ 81‘) . The operator acting on the field here is known as “pseudo-differential”, and cannot

be represented by any finite analog.

The best that can be hoped for is an approximation to this operator that will result in as little reflection into
the grid as possible. Such an approximation is made by replacing the radical by some rational function. The
quantity s can be treated as “small” compared to unity [which is plausible in light of the Courant condition], and
the following approximation is made:

M
2m
2 p2ms

- =t (2.24)
1+ q,,5"

Good results have been shown for the case of this rational function corresponding to the [2M ,2N] Pade

approximant of the radical'®. [That is, the first 2M +2N +1 terms in the Taylor series of both sides of Eq. (2.6)
are identical.] Furthermore, it has been shown that a necessary and sufficient condition for stability is"

Ne{M-1,M,M+1}.
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The simplest case corresponds to [2M ,2N]=[0,0]; here, the boundary condition becomes

[(a/ay)—,/8/80(8/81')][E(X)(x,y,1')] =0. If one propagates a plane wave given by
y

=Y
E(‘)(x,y,z'):exp[—i27t(xsin19+ ycos?+ 1)//1] to this boundary, then the reflected amplitude here is

—(1-cos®¥)/(1+cos %), which is zero only in air at normal incidence. Because the mask is usually embedded in
a dielectric such as quartz, this reflection coefficient will take on larger values and the error involved in this
zeroth-order approximation will be unacceptable. It turns out that the case [2M 2N ]=[2,0] provides a

reasonable amount of absorption at the boundary. The boundary condition for E-polarization here, upon using Eq.
(2.7), is simplified to

0 € d (s) 1Ju,e| o (s)
—+ | ——\E )Y, - | —H .Y, =0. 2.25
[ay ’ \} & ar}[ Sy T)]yﬂ 2 g, [ax S n.7) 223

y=Y

One can show that the reflected amplitude is now —[(1—00529)/(14—00319)]2 , so that the reflection error is

reduced drastically”. In principle, one can continue to reduce this reflection error by going to higher orders, but
this second-order approximation is sufficient for the purposes of this paper.

The absorbing boundary conditions act only on the scattered portion of the field; nevertheless, it is the total
field that is propagated. One way to deal with this is to simply subtract the incident field [which is known
analytically] from the total field in the vicinity of the boundaries, apply the boundary condition, and then add back
the incident field. A more efficient means of applying these conditions to the total field, however, that is less
susceptible to roundoff error is possible. To illustrate, note that the typical incident field in our simulations is a
normally incident plane wave in air. The equation satisfied by this field is

aE(i) aE(i)

0, 2.26
3y or (2.26)

and this equation is to be added to Eq. (2.25). Because H S) =0 for normal incidence, the boundary condition for

the total field can be expressed in terms of the known initial field. A similar analysis occurs for the other edge.

There are two final notes: first, discretizing Eq. (2.25) is similar to that for Maxwell’s equations, but
stability is ensured if one averages over the fixed coordinates. Second, there are rational approximations to the
radical other than that in Eq. (2.24) which may prove to be more convenient (in terms of using higher-order
approximations to the radical) in a user-friendly software package than what is used here, and such
approximations are the subject of current research®'.

2.5. Comparison with exact results

The best way to test the finite-differencing algorithm is to have a nontrivial case available in which an
analytical solution exists. The following examples are simple cases designed to provide a verification of the
correctness of the algorithm outlined above.
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2.5.1. Layered Medium

Consider a plane wave in air (index = n,), normally incident on a thin film at y =0 of index of refraction n,
and thickness D, and this thin film has been deposited onto a substrate of index n;. The electric field within the
thin film has been shown to take the form®

(n, +ny) ti:xp[ik2 (D- y)] +(n, —n,) Cxp[—ik2 (D- y)]
(n, +n, )(n, +n,)exp|ik, D]+ (n, —n,)(n, —n,) exp[—ik,D

E(x,y)=2n, ] EY(x), (2.27)

where k,=27zn,/A. Upon taking the values for the indices of refraction n =1,n,=2,n;=4 and setting
A=500nm and D =1000nm, the value of the field amplitude throughout the region surrounding the film
becomes

04, y<-=D
|E(y)|=1 04y/1+3sin*(47y/ 4), -D<y<0 (2.28)
044/1+15sin*(27y/ 4),  y>0.

The results of the FDTD calculation are in Fig. 1, and it is clear that the errors involved here are very small.

2.5.2. Sommerfeld Half-plane

The simplest and best-known case of an exact result in rigorous diffraction theory is that for an infinitely
thin, perfectly-conducting half-plane, whose exact solution was discovered by Sommerfeld in 1896. Let the
conductor be in the plane y =0, x>0, and consider a plane wave incident from the half-space y>0. If the

function g(s) = exp[—isz]erfc[sexp(—iir/ 4)], then the total field is given by

E/(x,y,7)= %exp[i%lz(r - z‘)]{ g[—\/i/l?r cos( v —2“" )] - g{-@ cos( v +2a0 )}} , (2.29)

where x=rcos®, y=rsind, and ¢, is the angle the incident wave makes with the surface of the conductor.

[For a normally incident plane wave, a, =7/2.]

The results of both the exact and the FDTD calculations are presented in Fig. 2. An important feature of this
computation is that these results were obtained by propagating the scattered component of the field rather than the
total field itself. That is, Eq. (2.18) is modified in the regions outside of free space to include a source term, rather
than including the source term in the boundary conditions. (This is not necessary for the other equations, as the
materials are not magnetic.) A comparison with this computation performed by propagating scattered and total
fields showed that, for this computation (and only this computation from all those in this paper), given exactly the
same grid spacing, etc., the scattered field computation had far less error. The reason behind this is not clear yet,
but a rule of thumb of when to use total vs. scattered field formulations is one subject of current research.
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3. Integration with PROLITH/2

The output of a typical mask topography simulation described above will take the form of a 1D
“transmittance” of the mask, i.e., the amplitude and phase of the electric field directly beneath the bottom of the
mask. By considering this transmittance to be an arbitrary 1D gray-scale mask, it is easily integrated into the
PROLITH/2 simulation environment. The complex transmission function to be input into PROLITH/2 is sampled
at the plane immediately below the feature with the largest depth. With coherent illumination, PROLITH/2 easily
computes the diffracted orders and a comparison of any results using this new transmission function against the
corresponding Kirchhoff mask is readily available.

The real potential challenge lies with partially coherent illumination. In general, the mask transmission
function will depend on the angle of incidence of the illumination. As each simulation is a very expensive (i.e.,
long) computation, the possibility of performing several such computations at various angles for a single mask
simulation becomes less than desirable. The Hopkins approximation, which states that the only effect of an
oblique angle of incidence is the shifting of the diffraction pattern®, provides relief by removing this angular
dependence from the transmission function. Furthermore, Wong® has shown that this approximation is good
when the angle of incidence is less than 30°. Therefore, we need to compute only the normally incident case for
most applications.

The following examples represent standard cases that will illustrate when the Kirchhoff approximation
becomes invalid. A rule-of-thumb is that when the smallest feature is about a wavelength, one must use a full
electromagnetic computation to get reasonable accuracy. Although this assumption is the subject of active
research, it will be interesting to see how much error there is in the aerial images in the cases that follow. In all of
the examples below, the systems are illuminated by a conventional DUV source (248 nm) with a partial coherence
factor of 0.5 and a numerical aperture of 0.6. The mask is made up of chrome-like elements of index 2.5+i 2.0

that have a depth of 100 nm and are set on glass of index 1.51. The goal in all cases is to print a 0.25 pm line.

3.1. Isolated Line

In printing a single line, it is natural to simulate the effect of a single element on the aerial image. In order to
print a subwavelength line, a stepper with a magnification of, say, 4X is employed. Within the Kirchhoff
approximation, the only difference in the aerial image between the line imaged with the 4X stepper and a line 4
times as small imaged with a 1X stepper is in the radiometric factor in the inner integral in Eq. (1.1)*

2 p2
1 ﬂfx/R) , B

K(f.)=
() [ F
where R is the reduction factor (4 in the case above). As this factor is typically close to unity [For the parameters

given above, the average value of this function over the NA range is about 1.03.], one would not expect much
variation between 4X and 1X imaging.

In Fig. 3, the results of the FDTD computation are presented for the case of 4X reduction. The field in the
vicinity of the mask is presented in (a) and (b), and it is clear that there is an obvious departure from the Kirchhoff
field here. The most prominent features of these plots are the smoothing out of the discontinuities introduced by
the Kirchhoff approximation, and the ringing of the amplitude along a transverse plane. The amplitude of this
ringing decreases with the distance from the nearest chrome feature. The phase of the field below the mask is not
presented as there is a negligible departure from what is introduced by Kirchhoff. In (c), the aerial image is
computed, and this is compared to the corresponding image using the standard Kirchhoff approximation, as
calculated using PROLITH/2. Note that the only appreciable difference between these two images is at the first
maximum of the intensity.
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The results of using the same mask, but with 1X magnification, are shown in Fig. 4. Note that the difference
in the aerial image from the Kirchhoff approximation is much greater, as one might expect. The prediction here is
that the image width is somewhat larger than one would expect if a rigorous computation had not been
considered.

3.2. Equal Lines and Spaces

The next example to consider is a mask made up of equal lines and spaces. This problem can be looked at in
one of two ways: as scattering by the chrome, or diffraction by an aperture in the chrome. The results for the 4X
case are shown in Fig. 5, and the 1X in Fig. 6. Note that, in Fig 5(b), the intensity in each space has 4 maxima,
while in Fig 6(b), it has 1 maxima. This is a general trend that is repeatedly confirmed throughout the rest of the
paper: for a space N waves wide, there will be N maxima in the mask transmittance function. In both cases, there
does not seem to be more than a 2% difference in the aerial image intensities between the full EM case and the
Kirchhoff case.

3.3. Alternating Phase-Shifting Mask

We also considered imaging a 0.25 um line using an alternating phase-shifting mask. This mask is similar to
that considered by Wojcik, ez al’, except that we use DUV illumination and magnifications of 4X and 1X. The
results of this computation are shown in Figs. 7 and 8, respectively. For the 4X case, the phase deviates little
from the constant phase-shift expected, and the aerial image intensity shows the characteristic features noted by
prior computations: a decrease in peak intensity in the lobe corresponding to the phase-shifted region, and a slight
narrowing of the linewidth (in contrast to that found for the isolated line). For the 1X case, however, the results
are much more drastic. The mask transmission function seems to have the beginnings of some nontrivial phase
variation, and the peak intensity directly under the phase shift has been reduced severely. The result is an aerial
image that is radically different from the corresponding Kirchhoff approximation. In fact, the peak intensity of
the phase-shifted region has changed so much that the Kirchhoff model will fail to make even crude qualitative
predictions about which features will print.

3.4. Proximity-Correcting Scattering Bars

Finally, we considered the case of a 0.25 pm chrome line surrounded by 0.0625 um scattering bars placed
0.3125 um from the edges of the line (1X dimensions). Note that there are indeed 5 maxima in each space
between the line and the scattering bars for this 4X mask. The importance of this example, however, lies in the
difference between the rigorous and Kirchhoff models. The purpose of the scattering bars is to reduce the
difference between isolated and a dense line by making the isolated line “look™ dense. Of course, it is imperative
that the side dips caused by the scattering bars are shallow enough that they do not print. The rigorous model
shows us that, in this case, the Kirchhoff model underestimates the printability of these scattering bars.

4, Conclusions

We have shown that, for some cases, rigorous electromagnetic modeling is crucial in predicting lithographic
phenomena accurately. While it is clear that such rigorous modeling is necessary in most cases when the smallest
feature is a wavelength or smaller, it can also be important when that feature size is somewhat larger, especially in
phase-shifting masks.

Future work will take on a few different directions. One such direction will be towards improving the FDTD
model in terms of efficiency and stability. One of the main focuses of this effort will be deriving a scheme that is

stable, even when the conditions in Eq. (2.20) are violated. Another direction this research effort will take is in
finding ways to model the electromagnetic effects without relying on an expensive algorithm like FDTD. The
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goal in finding such an algorithm is to find a correction that has a computation time on the order of that for
Kirchhoff. The ultimate result of this effort will take the form of a fast, accurate, and robust electromagnetic
simulator, coupled with a full lithography model, to more accurately simulate the lithographic effects of mask
topography.
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Fig. 3. (a) The electric field intensity in the vicinity of a 4X, 0.25 wm chrome Line. Note that the axes are
in mask dimensions and are in microns. (b) The field intensity immediately below the chrome. The
ordinate 1s scaled in wafer coordinates and are in nm. (¢) The aerial image intensity due to the transmission
function of the mask and its counterpart due to the Kirchhoft approximation.
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