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bstract. Reaction–diffusion chemical systems where the
atalyst of the reaction is the only diffusing species are in-
estigated. Here, the correlation length and Hurst roughness
xponent are derived in one-, two-, and three-dimensional
rst-order catalytic reaction–diffusion problems. These re-
ults are relevant to many chemical systems, and in particu-

ar to chemically amplified photoresists used in semiconduc-
or lithography, where the correlation length and Hurst
xponent affect the line-edge roughness of sub-100-nm
rinted features. © 2009 Society of Photo-Optical Instrumentation Engi-
eers. �DOI: 10.1117/1.3155516�

ubject terms: line-edge roughness; reaction-diffusion; correlation
ength; roughness exponent; Hurst exponent; autocorrelation; sto-
hastic modeling.

aper 09027CR received Mar. 2, 2009; revised manuscript received
pr. 21, 2009; accepted for publication Apr. 30, 2009; published
nline Jun. 18, 2009. This paper is a revision of a paper that ap-
eared at the SPIE Conference on Advances in Resist Materials and
rocessing Technology XXVI, February 2009, San Jose, California.
he paper presented there appears �unrefereed� in SPIE Proceed-

ngs Vol. 7273.

he stochastic behavior of reaction–diffusion chemical sys-
ems, where chemical species are simultaneously reacting
nd diffusing, has been extensively studied.1 Unfortunately,
nalytic solutions to the stochastic differential equations
overning these systems are rarely available, and so nu-
erical simulations are frequently employed.2 Still, there is
need for simple analytical descriptions of key phenom-

non, to provide insight and to validate and guide model
evelopment.

An important class of reaction–diffusion problems is
hat of a diffusing catalyst with all other reactants immo-
ile. As an example, consider chemically amplified photo-
esists used in semiconductor lithography. Exposure of the
olymer-based resist to light causes the generation of acid.
subsequent bake step allows the acid to diffuse and cause

hemical reactions at specific sites on the surrounding poly-
er molecules that change their solubility in developer.
ince the acid is not consumed in the reaction, it acts as a
atalyst. This acid–polymer reaction is first order in acid
oncentration �H� and first order in concentration of reac-

932-5150/2009/$25.00 © 2009 SPIE
. Micro/Nanolith. MEMS MOEMS 029701-
tive polymer sites �M�, so that the governing kinetic rate
equations are

�M

�t
= − kMH,

�H

�t
= ��D � H� , �1�

where k is the reaction rate constant, and D is the acid
�catalyst� diffusivity. Of course, these reaction–diffusion
rate equations apply to many other catalytic systems as
well.

Mean-field solutions to the reaction–diffusion system of
Eq. �1� are useful in higher-dimensional problems �for ex-
ample, Euclidian dimension d=3�, when the size of the
domain of interest is large enough to ignore stochastic
variations. In sub-100-nm lithography, however, stochastic
variations give rise to roughness at the edges of the printed
features with RMS edge deviations of several
nanometers.3–6 Further, frequency analysis of this rough-
ness shows correlation lengths that can be tens of
nanometers.4,5 It is the goal of this work to derive the au-
tocorrelation behavior of first-order two-component
reaction–diffusion systems where the only diffusing com-
ponent is a catalyst.

Solving the mean-field reaction kinetic equation gives

�M�
M0

= exp�− kt�Hef f�� , �2�

where M0 is the initial concentration of M, and Hef f is the
effective catalyst concentration, the time average of the
catalyst concentration experienced by a reaction site. The
effective catalyst concentration can calculated from,3

Hef f = H�t = 0� � RPSF and �Hef f� = �H�t = 0�� � RPSF, �3�

where � denotes convolution, and the reaction–diffusion
point spread function �RPSF� is the time average of the dif-
fusion point spread function �DPSF�:

RPSF =
1

tf
�

0

tf

DPSFdt , �4�

where tf is the total reaction–diffusion time. For the case of
constant diffusivity of the catalyst, the DPSF is the standard
Gaussian diffusion kernel and is affected by time integra-
tion through the diffusion length, �D= �2Dt�1/2. Thus, using
the 1-D case as an example,

RPSF =
1

tf
�4�D

�
0

tf exp�− x2/4Dt�
�t

dt . �5�

Analytic expressions for RPSF have been previously derived
for 1-D, 2-D, and 3-D cases:3
Apr–Jun 2009/Vol. 8�2�1
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-D: RPSF�x� = 2
exp�− x2/2�D

2 �
�2��D

−
�x�
�D

2 erfc� �x�
�2�D

	 ,

-D: RPSF�r� = −
1

��D
2 Ei�−

r2

2�D
2 	, r = �x2 + y2�1/2,

-D: RPSF�r� =
1

2��D
3 
�D

�r�
erfc� �r�

�2�D
	�,

r = �x2 + y2 + z2�1/2, �6�

here erfc is the complimentary error function and Ei is the
xponential integral.

Because a single catalyst molecule diffuses and poten-
ially causes many reactions, these reactions will be sto-
hastically correlated. If the diffusion of the catalyst is the
nly mechanism by which the concentration M becomes
patially correlated, the autocorrelation of the RPSF will de-
ne this spatial correlation. Consider first the �non-
ormalized� autocorrelation of the effective catalyst con-
entration:

Hef f
��� � �
Hef f�r� − �Hef f��
Hef f�r + �� − �Hef f��� . �7�

pplying Eq. �3�,

Hef f
= ��H − �H�� � �H − �H��� � 
RPSF � RPSF� . �8�

ssuming that the initial distribution of the catalyst is sto-
hastically uncorrelated, �H− �H�� � �H− �H�� will be a
elta function at the origin multiplied by the variance of H.
hus, for this case,

Hef f
= �H

2 �RPSF � RPSF� . �9�

It will be useful to normalize the autocorrelation func-
ion to be one at the origin. For the 1-D case,

Hef f
��� =

�−�
� RPSF�x�RPSF�x + ��dx

�−�
� 
RPSF�x��2dx

. �10�

or the 2-D and 3-D cases, integrations are best done in
olar and spherical coordinates, respectively. This allows
he double and triple integrals, respectively, to become
ingle integrals over distance r 
of the form of Eq. �10�� by
ultiplying the 2-D RPSF by ��r� and the 3-D RPSF by

r�. Analytical evaluation of Eq. �10� for the 1-D, 2-D, and
-D cases does not seem possible, so numerical integrations
ere performed. Figure 1 shows the results. Each of these

esults can be extremely well approximated by a standard
xponential correlation function:

Hef f
��� = exp
− ����/��2�� , �11�

here � is the correlation length, and � is the Hurst �rough-
ess� exponent. Fitting the numerical evaluation of Eq. �10�
o the empirical function �11� produces the results shown in
able 1, where both a linear fit to the autocorrelation func-

ion and to the logarithm of the autocorrelation function
ere performed. The resulting fits are extremely good—
lotting the linear fits on Fig. 1 would produce lines indis-
. Micro/Nanolith. MEMS MOEMS 029701-
tinguishable from the calculated results from Eq. �10�. Ob-
viously, the linear fit does a better job of matching the
small-� behavior, while logarithmic fitting results in better
matching to the large-� region.

These results show that diffusion of the catalyst in a
first-order reaction–diffusion system produces persistent
correlation ���0.5�, with a correlation length that is a mul-
tiple of the diffusion length �as expected�. For the important
3-D case, ��0.9, and the correlation length is just over
50% greater than the catalyst diffusion length. Note that the
correlation length derived here differs significantly from the
value of ��D /2 derived by Gallatin.7

To find the autocorrelation behavior of the overall reac-
tion, define the relative reaction product concentration as

p = 1 −
M

M0
= 1 − exp�− ktHef f� . �12�

For the chemically amplified resist case, p represents the
relative concentration of deblocked �deprotected� sites. For
small amounts of deprotection,

p � ktHef f , �13�

so that the normalized autocorrelation of p in this regime is

R̃p��� � R̃Hef f
��� . �14�

These results can now be compared to experimental
line-edge roughness measurements of printed optical li-
thography patterns. Measurements of many lithographic
patterns for a particular extreme ultraviolet �EUV� lithog-
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Fig. 1 Numerical evaluation of the RPSF autocorrelation for the 1-D
�thick solid line�, 2-D �thin solid line�, and 3-D �dashed line� cases.

Table 1 Results of the best fit of Eq. �11� to the numerically evalu-

ated Eq. �10�, using a least-squares fit to R̃Heff
�linear fit� or to its

logarithm �logarithmic fit�.

Linear fit Logarithmic fit

� /�D � � /�D �

1-D 1.266 0.848 1.252 0.817

2-D 1.532 0.936 1.515 0.901

3-D 1.528 0.900 1.519 0.879
Apr–Jun 2009/Vol. 8�2�2
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aphy tool showed roughness exponents of about 0.5 to 0.6
nd correlation lengths of about 20 nm �Ref. 4�, and a
93-nm-wavelength lithography process showed roughness
xponents of about 0.4 to 0.6 and correlation lengths of
bout 20 to 35 nm �Ref. 5�. A separate experimental study
ound a roughness exponent near 0.5 for both electron-
eam and 193-nm-wavelength imaging.6 All of these stud-
es employed chemically amplified resists that follow the
asic kinetics described here. The fact that the experimental
urst exponents are significantly lower than that derived
ere for the catalytic reaction–diffusion phenomenon sug-
ests that a different correlation mechanism may also be at
ork. In particular, loss of the acid catalyst through
uenching by a diffusing base �an A+B→0 annihilation
eaction� is likely to be a significant factor in these resists.
lso, dissolution of the polymeric resist is likely to lead to

elf-affine surfaces with a correlation length dependent on
he development time and a roughness exponent closer to
he experimentally determined values.8 Both of these ef-
ects need further investigation. It is entirely possible, how-
ver, that measurement of the roughness coefficient as pre-
iously reported is inaccurate due to the resolution/noise
imits of the LER measurements themselves.

In conclusion, numerical evaluation of the analytic
eaction–diffusion mechanism for the case of a diffusing
. Micro/Nanolith. MEMS MOEMS 029701-
catalyst �in the absence of base quencher� has produced a
predicted roughness coefficient intrinsic to this system and
a correlation length that is a simple multiple of the diffu-
sion length of the catalyst �in 3-D, ��0.9 and ��1.52�D�.
These results will be useful in the development of a full
stochastic model of LER formation in semiconductor li-
thography.
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