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In this paper a continuous approximation to the critical ionization (CI) model has been derived and
shown to match the CI model extremely closely. Further, both of these models were shown to match
the widely used Mack model of dissolution over the lithographically significant ranges of
development rates. The variance of the dissolution rate is shown to arise from the variation in the
development path required to bypass randomly insoluble polymer molecules rather than just the
variance in the polymer solubility itself. Percolation theory, where the percolation probability is
equal to the probability that a polymer molecule will become soluble, has the potential for providing
the theoretical framework required to determine this variance in dissolution path. © 2009 American

Vacuum Society. [DOL: 10.1116/1.3117346]

I. INTRODUCTION TO STOCHASTIC MODELING

Most theoretical descriptions of lithography make an ex-
tremely fundamental and mostly unstated assumption about
the physical world being described: the so-called continuum
approximation. Even though light energy is quantized into
photons and chemical concentrations are quantized into spa-
tially distributed molecules, the descriptions of aerial images
and latent images ignore the discrete nature of these funda-
mental units and use instead continuous mathematical func-
tions. When describing lithographic behavior at the nano-
meter level, an alternate approach, and in a very real sense a
more fundamental approach, is to build the quantization of
light as photons and matter as atoms and molecules directly
into the models used. Such an approach is called stochastic
modeling, and involves the use of random variables and
probability density functions to describe the statistical fluc-
tuations that are expected. Of course, such a probabilistic
description will not make deterministic predictions; instead,
quantities of interest will be described by their probability
distributions, which in turn are characterized by their mo-
ments, such as the mean and variance.

Stochastic modeling of lithography offers two advantages
over continuum modeling. First, since all fundamental
mechanisms involved with lithographic printing are neces-
sarily atomistic and stochastic in nature, any attempt to de-
velop first-principles models should at least consider the sto-
chastic nature of these first principles. Second, a continuum
model is fundamentally incapable of predicting line-edge
roughness (LER), since that roughness comes from the sto-
chastic nature of the events that give rise to a lithographic
feature. In this paper, the stochastic nature of resist dissolu-
tion is explored. First the previously published critical ion-
ization model is described, then a continuous approximation
to this model is derived. The uncertainty in polymer dissolu-
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tion is considered, but the uncertainty in development rate
requires a stochastic description of the development path as
well.

Il. CRITICAL IONIZATION MODEL

Tsiartas ef al.' developed the first truly mechanistic model
of phenolic polymer-based photoresist dissolution called the
critical ionization (CI) model. Consider a resist made up of
monodisperse phenolic polymers each with N phenol groups,
some of which are initially blocked (protected). Acid gener-
ated upon exposure catalyzes the deblocking (deprotection)
of these phenol groups during postexposure bake. Exposure
of an unblocked site to developer leads to ionization of the
phenol —OH group. The polymer becomes soluble in the de-
veloper only after some critical fraction of the N phenol
groups become ionized. Suppose that k phenol groups must
be ionized before the polymer becomes soluble. The critical
ionization fraction, ¢, is then

k-1 k

AR =

N <¢cm\N' (1)

Given some probability p;,, that a given phenol group is
ionized, the probability that j of the N phenol groups on any
given polymer are ionized is given by the binomial distribu-
tion (assuming that each ionization event is independent).
The probability that a polymer molecule is soluble is just the
sum of all of these binomial probabilities for j= k. Defining
a random binary variable y, (y,=1 when the polymer is
soluble and y,=0 when not), the result of Tsiartas et al.' is

N N
—1) = Y N1 — . \NAT
P(yr—”—gk(N_j);,-!(”wn)]“ Pion)" . (2)

A simplified version of this critical ionization model is
frequently invoked (informally dubbed “critical ionization
lite”). Ignoring the details of phenol group ionization, one
can idealize the dissolution process by assuming that when-
ever a polymer touches the resist-developer interface, all un-
protected phenol groups are instantly ionized. Thus, for any
polymer on the resist-developer interface, p;,, can be related
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to the probability that a site will still be blocked at the end of
the postexposure bake (p,,): pion=1-p,,. Further, the prob-
ability p,, can be related to the mean concentration of
blocked polymer sites at the end of the PEB, (M), and the
total concentration of phenol groups (blocked and un-
blocked), Ph. If the resist is formulated so that [ of the N
phenol groups are initially blocked,

= (m)~, (3)

where M, is the initial (before deprotection) concentration of
blocked polymer sites, and m is the relative concentration of
blocked polymer sites, M/ M.

If one makes the assumption that the dissolution rate of
the photoresist is proportional to the probability that a given
polymer molecule is soluble, the critical ionization model
(lite) leads to a development model: the prediction of disso-
lution rate R as a function of mean concentration of remain-
ing blocked polymer sites.

<R> = RmaxP(yr: l)

NN PNl \N
= R 2 f(l—(lm;,) <<m>ﬁ> )
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The assumption that dissolution rate is proportional to the
polymer solubility probability will be explored below. Often,
a minimum dissolution rate (R,;,) is added to Eq. (4) to
account for the small but nonzero dissolution rate of com-
pletely protected polymer.

lll. NEW FORMS OF THE CRITICAL IONIZATION
MODEL

The critical ionization model expressed in Eq. (4) is rea-
sonably inconvenient to use in a simulation program (facto-
rials are computationally expensive). Since N is reasonably
large (typical values are between 10 and 30), one can ap-
proximate the binomial probability density function with a
Gaussian and the summation with an integral:

N
f e U~ U))Z/Zdej, (5)
k-0.5

where

RN RN ey o

Note that in converting the summation to an integration, a
starting point for integration of k—0.5 is chosen as the mid-
point between the discrete intervals of the summation [i.e.,
it 1s chosen as the midpoint of the range given by Eq. (1)].
Carrying out the integration gives

R=Rmax erfc(k_0'5_<i>), (6)

where erfc is the complimentary error function. Setting this
expression in terms of the relative concentration of blocked
polymer sites,
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FIG. 1. Comparison of the critical ionization model of Eq. (4) (solid lines)
with its approximate continuous version from Eq. (7) (dotted lines) for dif-
ferent values of k: (a) N=20 and (b) N=10. Note that for the case of k
=N/2, the dotted and solid lines are indistinguishable.

\[ ((m) = m,) )
<m>( —<m>>

where

N-k+0.5
My=—"—""".
[
Equation (7) can be termed the continuous approximation
critical ionization (CACI) model.

Figure 1 shows several comparison plots of CI and CACI
models. The CACI model does a better job of matching the
CI model for higher values of N and for values of k nearer
N/2. In general, though, the continuous approximate form
should be more than adequate for most simulation applica-
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tions. If a minimum development rate is added to the right
hand side of Eq. (7), this model will have five parameters:
Rpax> Rimins I, N, and my, (or alternatively k).

An advantage of the CI or the CACI models is the rela-
tionship between several of the model parameters (k, /, and
N) and formulation/structural parameters of the resist mol-
ecules themselves. More empirical dissolution models, how-
ever, are used in lithography simulators. The most popular of
these has been called the original Mack dissolution model,’
derived based on a proposed kinetic dissolution mechanism:

(a+ 1)1 =m)"

R=R,, R, 8
max Cl+(1—m)n min ()
where
n+1
a= (1 —my)".
n—1

This four parameter model has been found to match experi-
mental dissolution-rate data quite well. Figure 2 shows a few
examples how of this semiempirical kinetic model compares
to the critical ionization model (with R;,=0). The compari-
son was made by finding the Mack model parameters n and
my, that best fit the CI model for R<R,,,,/2. Since the two
models do not closely match over the full range of develop-
ment rates, fitting to the lower development rates is preferred
since higher development rates have much less impact on
resist profile formation.

Figure 3 shows the resulting best fit Mack dissolution
selectivity parameter n over a wide range of k values for both
N=10 and N=20 (for convenience, /=N was chosen). Em-
pirically, the best fit Mack model parameters can be related
to the CI parameters by

k-1

mth=1— N

N

n=HK1+0.083 85(1 — kiny,)]. 9)

These empirical relations are shown as the dotted lines in
Fig. 3. To first order, n=k, which matches with the kinetic
derivation of the Mack model.”

The good match of the Mack model to the CI model (and
by extension, the CACI model) in the lithographically sig-
nificant region of the dissolution-rate curve can be thought of
in two ways. Since the Mack model has found wide empiri-
cal acceptance with respect to both experimental develop-
ment rates and the predictive capabilities of simulators using
this model, the above comparison serves as empirical justi-
fication of the CI model by proxy. Alternately, the theoretical
foundation of the CI model and the first-principles meaning
of its parameters gives a firmer theoretical footing to the
Mack model and, along with Eq. (9), enables a more first-
principles interpretation of the parameters n and my,.

IV. UNCERTAINTY IN DISSOLUTION RATES

One important advantage of stochastic approaches to
modeling is the ability to predict the variance of physical

J. Vac. Sci. Technol. B, Vol. 27, No. 3, May/Jun 2009

12 1

1.0 =
08 |

06 1

R/Rmax

04 |

02+

0.0 +

12 7

1.0
08 w

06 J

R/Rmax

04

02+

0.0 +

(®)

FIG. 2. Comparison of the critical ionization model of Eq. (4) (solid lines)
with the original Mack model of Eq. (8) (dotted lines) for different values of
k: (a) N=20 and (b) N=10. The parameters for the Mack model were found
using a best fit to the CI model for R<R,,,/2.

quantities in addition to the mean, something that continuum
models cannot do. The stochastic nature of the critical ion-
ization model allows a prediction of the mean development
rate, as described in Sec. III, and also the variance of that
development rate. Equation (2) gives the probability that a
given polymer molecule will be soluble. Recalling the defi-
nition of the random binary variable y,, the mean value of y,
and its variance are given by

Gr=Pl=1), o =G)1-0)). (10)

The goal now is to relate these properties of y, to the
development rate. It is tempting to think of dissolution as
like any other bulk chemical reaction, where the probability
that the polymer is soluble is proportional to the mean-field
rate of dissolution. In this approach,
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20 ¢ defined as the velocity of the moving boundary between the
18 “ resist and developer. Consider the very simple case of a
. large, open-field exposure so that the mean dissolution front
c 16 T N=20 moves vertically through the resist. Letting z(7) be the depth
8 4t into the resist of the moving front, then
(0] E
€ 12+ d(z)
T (R)=—" (12)
o £
% B T Nominally, this path of development is perfectly vertical.
T 6 " However, when stochastic fluctuations are included these
= 4 £ paths have a random component and are only vertical in the
2 5 mean. To determine the uncertainty in development rate, the
F impact of polymer solubility uncertainty on the path of de-
L I S = velopment must be determined. One valuable approach to-
0 5 10 15 20 ward investigating the uncertainty in development paths is
ClI Critical k percolation theory.
(a V. DEVELOPMENT AS PERCOLATION
As an illustrative example, percolation describes the flow
10 F of fluid through a porous material by means of an intercon-
9+ nected clusters of holes in the material through which the
8 £ N=10 fluid flows. Let p define the relative density of holes in the
£ material (and thus the probability that any given point in the
8 7 material will be within a hole). If p=1, fluid flows unim-
GE) 6+ peded since the entire material is one big hole. If p=0, no
© g fluid can flow since there are no pathways in the solid mate-
& rial. While these two extreme cases are obvious, what is less
% “ __ obvious is the existence of a critical pore density, p., below
g 3 T which the distance that a fluid can travel becomes finite. In
2 £ other words, given an infinitely large block of porous mate-
1 I3 rial, for any p greater than or equal to p,, there will always
be at least one completely interconnected set of pours that
0 +————t allows fluid to travel an infinite distance through the mate-
0 2 4 6 8 10 rial. In three dimensions, the value of p. depends on the
Cl Critical k packing structure (lattice) of the material, but is typically in
the range 0.15-0.25. A value of 0.2 is often used for a three-
(b) dimensional random (disordered) cubic lattice.

FiG. 3. Best fit Mack dissolution selectivity parameter n for different values
of k (symbols plus solid line): (a) N=20, and (b) N=10. The parameters for
the Mack model were found using a best fit to the CI model for R
< Rpax/2. Also shown is an empirical fit (dotted line) given by Eq. (9).

(R)=Rpax(v)s 0= (R)(Rppax — (R)). (11)

Unfortunately, this simple approach leads to a result that
does not correspond to experience with line-edge roughness.
For example, if R,,,=500 nm/s and the mean R near the
resist line edge is 5 nm/s, Eq. (11) predicts that the standard
deviation of the development rate will be about 50 nm/s.
The maximum standard deviation of development rate occurs
when (R)=R,,,,/2, giving a standard deviation that is also
R ax/2. These uncertainties would imply a resulting line-
edge roughness far in excess of what is observed.

This difficulty is resolved by more carefully defining the
meaning of development rate. Rather than development rate
as a bulk property of the resist, development rate is best
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As one might expect, the rate at which the fluid flows
through the material depends on p. For p>p,, the rate is
proportional to p. But as p approaches p,, the rate generally
follows a power law:

where S is related to the fractal dimension of the material
and is often estimated to be around 2. For p <p,, fluid may
penetrate into the material, but eventually its flow comes to a
halt.

Many people have applied percolation theory to resist de-
velopment over the yeaxrs,*x_9 with mixed results. Given the
application of this theory that produced its name, most re-
searchers in this field have thought of development percola-
tion as the penetration of developer through openings in the
resist caused by the ionization of the deprotected phenol
group,Si8 though an average deptrotection probability over
the diffusion length of the acid has also been used.” Setting
up a percolation grid corresponding to phenol groups, the
percolation probability is thus equal to (or at least linearly
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related to) p;,, as defined above for the critical ionization
model. In the region as p approaches p,., this leads to®

R (pion _pion—c)2 = (pm - pm—(‘)z * (<m> - m(‘)z' (14)

The problem with this percolation approach to dissolution is
now clear: dissolution rate is proportional to the relative
blocked site concentration to the second power, with no op-
portunity to explain high-contrast dissolution behavior, nor
its dependence on N or [. Thus, many previous efforts at
using percolation theory to explain dissolution behavior have
proven less than fruitful.

A different choice for a percolation description is to con-
sider dissolved polymer molecules as sites within the resist
for developer to penetrate. In this view, percolation becomes
a stochastic approach in determining the path of dissolution.
The probability p then becomes the probability of polymer
dissolution, P(y,=1). As a result, in the high-dissolution-rate
region, development rate will be proportional to the probabil-
ity that a random polymer molecule is soluble. But in the
low-dissolution-rate region, development rate (the rate of
motion of the boundary between resist and developer) is re-
duced by the limited pathways available to developer to go
around insoluble polymers to keep the front moving.

Mathematically, the percolation behavior as described
above could be modeled as

ﬂ=<<yr>—pc)2

(15)
Rmax 1 —Pc

where (y,)=P(y,=1) is the probability that a polymer is
soluble as given, for example, by Eq. (4) or (7). While this
expression is only strictly accurate in the low-dissolution-
rate region ((y,) near p_), since this is the lithographically
significant region it will cause little harm to use this expres-
sion over the full range of development rates.

Figure 4 shows two plots of the resulting development
rate assuming (y,) can be predicted using the CACI model,
using p.=0.2. For Fig. 4(a), N=10, [=8, and k=4 in the
CACT+percolation model. Also shown in Fig. 4(a) is the
CACI model without percolation, but with N=13, /=13, and
k=6.9. Note that the two resulting development curves are
virtually indistinguishable, except a small difference near the
knee of the curve. For Fig. 4(b), N=20, [=16, and k=8 in the
CACI+percolation model. Also shown in Fig. 4(b) is the
CACI model without percolation, but with N=26, /=26, and
k=12.9. Again, the two resulting development curves are
very close, though the percolation model does drop to lower
development rates more quickly at the knee. Thus, the im-
pact of percolation can be seen as an effective increase in the
contrast of the development (giving the same performance as
a resist with a 30% higher value of N).

While adoption of a percolation approach will have an
impact on the predicted development performance of a resist
with known polymer configuration (that is, known N, [/, and k
parameters), the above results show that an empirical devel-
opment model that ignores percolation should do a good job
of describing the dissolution properties of a resist model that
includes percolation. The benefit of a percolation view, then,
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FIG. 4. Comparison of the CACI model with percolation (solid lines) and
without (dotted lines), with parameters adjusted to get the best match be-
tween the two: (a) N=10, /=8, and k=4 in the CACI+percolation, and N
=13, =13, and k=6.9 in the CACI without percolation; (b) N=20, [=16,
and k=8 in the CACI+percolation, and N=26, /=26, and k=12.9 in the
CACI without percolation.

should come from its ability to predict development path
uncertainty. Note, however, that percolation effects could be
an explanation for the “notch” effect—a lower than expected
development rate near the knee of the dissolution-rate
curve—that has been previously observed.'

Consider, as a first case, development in the high-
dissolution-rate regime (chosen for the simplicity of the ana-
lytic approach that will be taken). Consider the resist as
made up of a three-dimensional cubic lattice, each lattice cell
consisting of one polymer molecule. In the high-dissolution-
rate regime, most polymer molecules are soluble. Figure 5
depicts this case (in two dimensions) where an open cell
represents a soluble polymer and an “X” in a cell represents
an insoluble polymer.

Our simple case will assume uniform deprotection
through the volume, so that development will nominally pro-
ceed purely in the z (downward) direction. For a volume of
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FIG. 5. Schematic representation of a cubic grid of resist polymers (the open
grid represents a soluble polymer, and a grid filled with an “X” signifies an
insoluble polymer) for the case of a high-dissolution rate. The arrows indi-
cate paths of dissolution.

n,Xny,Xn, cells (letting n,=n,), where a of the cells contain
insoluble polymers, we have (by the law of large numbers)

P(y,=1)=1-——. (16)

nn,

Letting As® be the volume of one cell (As will typically be
one to a few nanometers), we shall pick a development time
t40v SO that fully deprotected resist will just be removed to a
depth n_As:

=—. (17)

Figure 5 also depicts possible development paths through
this lattice. If a vertical column of the lattice cells contains
no insoluble polymers, then the path of development through
those cells will be vertical, reaching the bottom in the allot-
ted development time (labeled as path 1 in Fig. 5). If, how-
ever, a path encounters an insoluble cell, it must go around
that cell to continue. The principle of least action dictates
that the path of least time will be chosen. The path labeled 2
in Fig. 5 will dissolve the cells below the insoluble polymer
in the least time, and in the allotted development time will
reach a depth of z,,,,—As. If a development path encounters
i insoluble polymers, the depth reached will become approxi-
mately zp.—IAs.

Let us define P; as the probability that i insoluble poly-
mers are encountered over the course of one development
path. The resulting mean depth developed will then be

[

(2) = 2 (Zimax = 1AS) Py = Zya — As(i). (18)

i=0

If the mean number of insoluble polymers encountered over
one development path is reasonably small (so that they do
not interact with each other or “clump” together), its value
can be approximated as
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(i) =nP(y,=0) = “2(1 - Ply, = 1). (19)

A

Defining (h)=z,.x—(z) as the mean height of the surface
above 7z, we see that

<Z> = ZmaxP(yr: l)

The mean of the development rate can now be expressed
using the definition of development rate as the rate at which
the resist/developer interface travels (that is, the speed of the
development path). Applying Eq. (12) for this case of “uni-
form” random deprotection, and using Eq. (20),

and <h> = ZmaxP(yr = O) . (20)

(Ry=2 _

) =Rinax(y1)- (21)
Ldey dev

This result shows that the assumptions made (insoluble poly-
mers do not “clump” together) is equivalent to saying that
(y,»>p. and the development has not entered the percolation
regime defined by Eq. (13).

Calculating the variance of z or h requires some knowl-
edge of the probabilities P;. A very common result in perco-
lation problems (as well as in the kinetics of gases and other
well-known problems) is that the probability density of path
length traveled before encountering an insoluble polymer (x)
follows an exponential distribution.

P(x)= lge_)‘/g, (22)

where £ is the mean free path, given by

Zmax As
§=— U =5 (23)
iy  P(,=0)
The standard deviation of the exponential distribution is
equal to its mean, so that the standard deviation of the de-
velopment rate is then

o= % = Ry — (R)). (24)

dev

For the case of dissolution rates near the maximum, this
standard deviation is significantly smaller than that given by
Eq. (11), which looked at a bulk dissolution independent of
path.

The stochastic analysis of the dissolution path described
in the above example is extremely limited, examining only
the regime of high development rates rather than the more
interesting low development rates. However, even in this
limited regime we have been able to point out that stochastic
variations in development rates must be used to find stochas-
tic variations in the development paths if we wish to use this
information to predict surface or line-edge roughness. Fur-
ther efforts into the more difficult but more interesting re-
gimes of low development rates should lead to a prediction
of the influence of development properties on the resulting
surface and line-edge roughness of the final resist features.
Combining this stochastic description of development rates
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and paths with the statistical uncertainty in the amount of
deprotection after PEB (Ref. 11) would then lead to a com-
prehensive LER model.

VI. CONCLUSIONS

The critical ionization model is valuable for understand-
ing photoresist dissolution because of its ability to predict
mean dissolution-rate behavior as a function of photoresist
structural properties. Unfortunately, the mathematical form
of this model is cumbersome and computationally expensive.
In this paper a continuous approximation to the critical ion-
ization model has been derived and shown to match the CI
model extremely closely. Further, both of these models were
shown to match the widely used Mack model of dissolution
over the lithographically significant ranges of development
rates. These efforts so far have assumed an idealized photo-
resist formulation with monodisperse, identical polymers (N
and [ completely fixed). Further work will include distribu-
tions of these parameters to determine the effects of such
distributions on the mean dissolution rates.

Percolation theory is often invoked to show that stochastic
dissolution path effects impact the mean dissolution rate.
However, many past efforts have treated polymer ionization
sites as percolation sites, leading to predictions of dissolution
behavior far different from that observed experimentally. In
this paper, it has been shown that choosing the polymer mol-
ecule itself as the percolation site leads to development rates
consistent with experimental dissolution-rate behavior, and is
thus a better candidate for the proper application of percola-
tion theory to resist dissolution. However, the use of perco-
lation theory to predict mean dissolution rates does not lead
to a prediction that is easily discernable from bulk
dissolution-rate predictions with moderately changed param-
eters. Thus, the value of percolation theory will undoubtedly
come from its use in predicting the variance of dissolution
rate.
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In order to model line-edge roughness, the variance of
dissolution rate must be known in addition to its mean value.
However, the variance of the “bulk” dissolution rate is not
the critical variance here, but rather that variance in the dis-
solution front moving through the resist. In other words,
variation in dissolution arises from the variation in the de-
velopment path required to bypass randomly distributed in-
soluble polymer molecules rather than just the variance in
the polymer solubility itself. An analytical treatment of the
variance of the dissolution front in the high-dissolution-rate
regime has been provided here. This treatment, while insight-
ful, is only a first step toward a fuller understand of devel-
opment path variance. In particular, the more interesting re-
gime of low-dissolution rates (such as the dissolution rate at
the nominal resist edge) has yet to be addressed and will be
the subject of future work. Percolation theory, where the per-
colation probability is equal to the probability that a polymer
molecule will become soluble, has the potential for providing
the theoretical framework required to solve this problem,
leading to more comprehensive model of LER than is cur-
rently available.
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