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Abstract 

Line-edge roughness (LER) and linewidth roughness (LWR) in lithography are best characterized by the roughness 

power spectrum density (PSD), or similar measures of roughness frequency and correlation. The PSD is generally 

thought to be described well by three parameters: standard deviation, correlation length, and roughness exponent. The 

next step toward enabling these metrics for pertinent industrial use is to understand how real metrology errors interact 

with these metrics and what should be optimized on the critical dimension scanning electron microscopy (CD-SEM) to 

improve error budgets. In this work, Java Monte Carlo Simulator of Secondary Electrons (JMONSEL) simulation is 

used to better understand how various SEM parameters, beam size/shape, and sample profile influence SEM line edge 

uncertainty and also some of the systematic shifts in edge location assignment. A thorough understanding of the impact 

of the SEM on the measurement results enables better measurement of LER PSD and better interpretation of 

measurement results. 

 

Subject Terms: power spectral density, PSD, line-edge roughness, linewidth roughness, LER, LWR, JMONSEL, 

CD-SEM 

1. Introduction 

Control of roughness in photoresist and post-etch features has become more important as features continue to shrink. 

However, the need for control is accelerating; with planar CMOS, the roughness of the bottom edge defines a 

transistor’s effective width, whereas with our contemporary FinFETs and tri-gates, the roughness of the entire sidewall 

acts as the active surface for these non-planar transistors. Metrology studies have gradually improved our ability to 

measure roughness, but as we approach the 10 nm node, sub-nanometer roughness control will be required, with 

metrology error decreased to a mere 20% of that (i.e., approaching size ranges that can be described as atomic scale). 

Achieving such uncertainty levels will be quite challenging [1] [2] [3]. 

The current SEMI standard for line-edge roughness (LER) and linewidth roughness (LWR) measurement [4] specifies 

the sampling intervals and length, as well as the roughness amplitude metric in terms of a standard deviation. While this 

standard was, at the time, a very important step in the right direction for guiding the industry toward compatible and 

consistent measurements that reflected industry requirements, more information is needed for fully characterizing 

roughness, particularly the various spatial frequency characteristics. LER and LWR in lithography are best 

characterized by the power spectral density (PSD) of the roughness, or similar measures of roughness frequency and 

correlation. The PSD, in turn, is generally thought to be described well by three parameters: the standard deviation (root 

mean square [RMS] roughness), correlation length, and roughness exponent. A thorough theoretical study of these 

metrics was recently published by one of the coauthors [5] [6]. The authors recommend that the SEMI standard should 

be updated along these principles. 

Four major lessons were recently demonstrated in the previous work [5] [6]. First, PSD for LER is best characterized by 

the three parameters  (the standard deviation),  (correlation length), and H (rolloff exponent, also called the roughness 

exponent). Second, since the error of a single PSD is equal to the amplitude itself at each frequency, averaging many 

PSDs is required to reduce the error, such as averaging 10–100 PSDs from nominally equivalent features.  Third, data 

windowing is required for reducing spectral leakage (leakage meaning a spreading or blurring effect where the PSD 

components shift in frequency due to measurement of a finite line length).  And fourth, the sampling distance is 
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optimized to balance aliasing with averaging when set to double the full width half maximum (FWHM) of the effective 

spot size including the scanning electron microscopy (SEM) interaction volume (best described as the Gaussian 

beam/resist interaction FWHM in the case of a resist line).  While these lessons describe the general concepts of proper 

sampling, the next step toward enabling these new metrics for pertinent industrial use is to understand how real 

metrology errors interact with each of those metrics, and what should be optimized on the critical dimension SEM (CD-

SEM) to improve the error budgets. Another previous work introduced the idea of the uncertainty of a single edge 

location as being a fundamental building block for how metrology error influences various CD and LER metrics [7] [8], 

and this edge uncertainty () is also directly related to the LER bias [8] and to the integral of the high frequency noise 

floor through the entire frequency range of a given measurement. 

In this work, JMONSEL simulation [9] [10] [11] is used to better understand how various SEM parameters, beam 

size/shape, and sample parameters, such as materials used and profile, influence  and also some of the systematic 

shifts in edge location assignment. A thorough understanding of the impact of the SEM on the measurement results 

enables better measurement of LER PSD and better interpretation of measurement results.  Eventually, these results can 

be input into previously-presented random edge roughness generators and solvers [6] [12] and iterated to generate the 

expected error responses in the various proposed roughness metrics. 

2. Simulation of Edge-Feature Linescans 

As stated above, we wish to explore edge detection errors—the typical effects on accuracy offset (systematic bias) and 

random edge detection error of various CD-SEM and sample parameters, as both of these effects, when applied to 

different points along the sidewall of a measured feature, can influence the measurement of roughness. Simulations 

allow for more flexibility than with experiments, both in the sample and the experimental conditions and in the 

statistical validity and metrics that can be known. For example, accuracy can be easily measured without resorting to 

reference metrology, since the design of the feature is inherently the reference value, and samples can be made truly 

perfect, with no footing, top corner rounding (TCR) or roughness/variation, unless designed in, and sidewall angles 

(SWAs) are exactly definable. There are limitations, in that the results are only as good as the physical models utilized, 

and not all effects are necessarily represented (such as maybe charging, electronic noise of the instrument, homogeneity 

of the materials, etc. 

Simulations in this study were performed using JMONSEL (Java Monte Carlo Simulator of Secondary Electrons), a 

program developed at the National Institute of Standards and Technology (NIST) which has the capability to use finite 

element analysis in order to follow primary electrons a they enter a material, scatter, lose energy, and generate 

secondary/backscattered electrons.[9]  By monitoring the electrons that exit the material and are captured, the electron 

yields can be found at each point and are plotted as line scans (often called waveforms). The physical models in 

JMONSEL are the best known models in the literature in the energy ranges used here, with complete transparency in 

their documentation, definition, and execution [10] [11]. Several different types of data are generated from the 

simulation. One is a waveform, which is a plot showing detected electron yields as a function of position (the electrons 

detected as the beam passes over each pixel). Energy histograms can also be recorded, and visualizations of the electron 

trajectories and resulting scattered electrons can be visualized if desired. JMONSEL is used here as a “virtual SEM”, 

where the user can input idealized structures from a limited list of materials, with perfect user-defined geometries, 

including geometries that cannot be currently fabricated. Additionally, these idealized structures have zero roughness 

(unless roughness is added), with no process variation, and with user-defined parameters, i.e. the reference values are 

exactly known, meaning accuracy is a simple bias calculation as a difference between a measured value and a designed 

value. The user can also define SEM parameters such as the number of incident electrons per pixel, pixel size, spot size 

and beam energy. The program can also monitor charging phenomena in and around the sample, although most of the 

samples here are small in height and made of materials that are not so susceptible to charging, thus charging was judged 

to be a secondary effect for a single measurement; additionally, enabling charging tracking makes the calculations 

extremely slow, thus charging was neglected in the simulations performed for this study. 

The main part of the study was a systematic DOE of dense line/space features. Feature/substrate composition, SWA, 

TCR, footing, beam energy and beam spot size were all varied within the DOE, not as full factorials, but as single-

parameter perturbations from our chosen standard condition, which was effectively a Si CMOS gate structure—Si lines 

on 2 nm thin SiO2 on Si, SWA of 89°, spot size of 0.5 nm 1 (full width at half maximum (FWHM) ~1.2 nm, similar to 

current 1.4 nm resolution of current CD-SEMs), and beam energy of 500 V. All features in the DOE used linewidths of 
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30 nm with 60 nm pitch and 50 nm height; to avoid possible complications, it was decided to design the lines to be 

larger than the small feature regime, where the interaction volume is smaller than the feature and tight spaces that might 

approach SEM resolution limits, thus the choice of 30 nm line/space.  

The TCR used had a 3 nm radius in one of the perturbations from the standard condition, and 1 nm, 2 nm and 3 nm foot 

with 2 nm height was added each sidewall in the conditions to explore footing effects. 

The lines were made of various materials including Si, poly(methyl methacrylate) (PMMA), SiO2 and Cu, with the 

substrate either Si or Si coated with 2 nm thin SiO2 or 80 nm thick PMMA. PMMA was chosen as it is believed to be a 

reasonable approximation of a photoresist material or organic ARC, in terms of SEM imaging. For each virtual test 

sample/condition in this study, many linescans (51) with N=200 incident electrons per pixel (for a total of N=10200 

electrons) were calculated, with 0.5 nm pixel sizes. At each pixel, averages and standard deviations of all the N=200 

values were calculated, yielding a high precision average waveform and a figure for noise. An example waveform is 

shown in Figure 1. 

 

 

   

 
Figure 1: Example outputs from JMONSEL for DOE base condition.  Top-left: Simulated trajectories in the 30 nm line/space Si-on-

thin SiO2 structure at 500 V and 0.5 nm spot, where the interaction volumes can be seen at feature tops and bottoms.  Top-right: 

Example waveform with averaging of all data for the DOE’s base condition, including waveforms for SE and BSE yields. 

Additionally, two versions of the SE waveforms with noise added are shown, for N=100 and N=1000. Bottom edges of the feature 

are exactly at ±15 nm. SE electrons are defined as having energies ≤ 50 eV, with BSE electrons defined as having energies > 50 eV.  

Bottom: Simulated image of same waveform with a random instance of expected noise for N=1000 (top) and N=100 (bottom). 

Through averaging different subsets of the N=200 waveforms and calculating the standard deviations, it was confirmed 

that the noise almost exactly varied as N
½
 (i.e., SNR ~N

-½
) as expected, as shown in Figure 2. Kurtosis and skew, which 

are statistical metrics for the peakedness and symmetry of a distribution compared to a true normal distribution, were 

also confirmed to be small. Thus the waveform noise from the simulator can be treated as Gaussian in nature.  
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To turn our virtual SEM into a “virtual CD-SEM”, 

various edge detection algorithms were made into Excel 

functions thru Excel VBA macro programming. These 

functions allow for defining a waveform function, 

defining whatever required thresholds and baselines, and 

adding a measured 1 noise and filtering. Several edge 

algorithms are available, including threshold, linear 

regression, sigmoidal fit, maximum derivative, and 

Gaussian fits. Some of the more advanced fitting 

algorithms can reduce edge detection noise, but since the 

error handling of some of these are not yet perfected, it 

was decided to use the basic threshold algorithm for this 

work, as it is the most robust and also probably the most 

commonly used in the industry. Model-based 

algorithms, which we have not developed, would further 

reduce these errors. The edge detection noise of the 

threshold algorithm is typically higher than all but the 

max derivative algorithm, but since the nature of the 

edge detection noise is what is to be studied, it is an 

appropriate choice. For this algorithm, baselines are chosen as averages of the SE yields between the lines, and 

thresholds of 20% and 80% were chosen for bottom and top edge detections, respectively. Background on these general 

algorithm types can be found in the literature [7] [13]. 

With the functionalized edge detection algorithm allowing for inputting the expected waveform noise and the waveform 

noise shown to vary as N
½
, a given waveform can be tested using the base average waveform, with noise at N=1000 

used as a baseline and adjusted by N
½
, to run many instances of the same edge detection calculation for nominally 

identical cases, to calculate the average edge detection error (the accuracy offset at one point along the line), and also as 

a standard deviation, which is also known as the edge detection reproducibility ( [7]) for the given case.  

This edge detection reproducibility () is a fundamental 

building block for understanding the random aspects of 

dimensional metrology error, as the sum of its effect 

over all the edge locations of a given measurement are 

related to its magnitude [7]. With many linescans its 

effect gets averaged down for CD, LER, and LWR 

measurements, but it adds a bias in quadrature for LER 

and LWR measurements, meaning that a perfectly 

smooth line will still yield an LER measurement of . 

The concept can be thought of as the “fuzziness of the 

edge”, as demonstrated in Figure 3. In turn,  can be 

reduced as N
-½

 by oversampling (i.e., if the measurement 

dose is increased). However, there are practical limits to 

how much this can be done, such as resist shrinkage, 

charging, contamination, throughput, and mechanical or 

environmental electromagnetic noise. Choice of edge 

detection algorithm is another major factor, as  is effectively a function of noise interacting with edge detection 

algorithm. Averaging along a waveform can also reduce , at the expense of edge detection accuracy offset, and 

averaging multiple linescans (binning) can also reduce , at the expense of the frequency bandwidth sensitivity of a 

roughness measurement (i.e., the Fourier window being sampled is greatly reduced). This has the effect of reducing the 

roughness measurement, as fewer spatial frequency components are summed. So ideally, for LER metrology at future 

nodes, such spatial filtering strategies should be avoided. So to summarize,  is strongly dependent on tool and recipe 

parameters, such as dose per pixel, imaging focus or astigmatism (which effectively means artificially increasing beam 

spot size), edge detection, and system electronic noise [7]. 

 

 
Figure 2: Example waveform noise from the main condition of 

the DOE, showing that waveform noise varies as N½, as 

expected. 

 
Figure 3: Schematic for problem of considering how noise 

effects the apparent measured position of a real line edge. The 

thick meandering line represents the real edge. The slimmer 

meandering line represents one measured edge out of infinite 

possibilities. The Gaussian curves overlaid on each linescan 

represent the distribution of measured edge locations [7]. 
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For each of the simulation conditions, 1000 edge location values for bottom and top and with different noise statistics 

are plotted as histograms (shown in Figure 4). In these data sets, it should be noted that since the error handling in the 

edge algorithm code still is not perfect, a few severe outliers were removed since those points represented the kinds of 

measurements that would be culled by post-processing of the data in real life utilization. 

  
Figure 4: Example results of bottom and top edge location histograms, for the base condition of the DOE. 

These same distributions can be represented by an average value and standard deviation (effectively ), as shown in 

Figure 5. The  metric, which represents the edge detection reproducibility, basically varies as N
-½

 as did the waveform 

noise (as expected). 

 

        
Figure 5: Example results of bottom and top edge location trends for average offset and , for different N values, for the base 

condition of the DOE. Note that  decreases as ~N-½, as the waveform noise did. 

 

   
Figure 6: Dependence of average offsets and  values for the DOE for various factors. The DOE base condition is Si lines on thin 

SiO2 on Si substrate imaged at 500 V with a 0.5 nm 1 beam, and is marked in each of the graphs. Left: Dependence on materials, 

with the different x-axis categories representing different line materials (the name before the slash) on different substrates (name after 

the slash). Center: Dependence of beam energy on average offsets and  values for the Si-on-SiO2 stack. Right: Effect of footing and 

top corner rounding (TCR) of the profile on average offsets and  values. 
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The average offset and  results of the JMONSEL DOE are shown in Figure 6. Some important and interesting trends 

can be seen by comparing the values of the various conditions against the base condition. For both average edge offset 

and , large changes are seen with SWA, as shown in Figure 7. This was already well-known for offset, but  is 

strongly affected also, and seems to have a significant quadratic dependence on SWA for SWA  90°. Material and 

beam voltage also have strong influences on both metrics, independent of spot size as all these values were computed 

with 0.5 nm spot. In addition to , accuracy offset differences from material non-homogeneities and SWAs will appear 

as apparent LER. TCR has a large effect on top , much more than does footing, which is a moderate effect. 

Surprisingly, the footing had minimal effect on the bottom . Note that these  values are based only on sampling 

statistics (and on edge algorithm, etc.), meaning that these are best possible theoretical values, and real values from 

electronic noise, vibration (etc.) will be worse. Also, since  adds a bias to roughness measurement, it will always be 

there unless suppressed. The  values seem reasonable; real tools have been measured to have  of between 1 nm and 

2 nm, but these are 3 values. The values calculated in these simulations make up a large portion of such values, so it is 

likely that other noise in the tool or sample can make up the difference. Alternately, this means that while some 

improvement can be made, there is a significant contribution to the noise from just the scattering statistics, which will 

act as a limit, although one that can be suppressed by oversampling or improved edge algorithms. 

A few other runs of the simulator were also performed to understand how beam spot size influences these metrics, with 

results shown in Figure 8. This is equivalent to a SEM resolution improvement on the low end of the spot size scale, and 

similar to an out of focus beam or an older tool on the higher end of the spot size scale; 1 = 0.5 nm is thought to be 

roughly equivalent to the performance of contemporary tools. SEM spot size is related to, but not exactly the same as, 

image resolution; a rough guideline is to use a spot’s FWHM as close to the image resolution, which by definition is 

2.35 for a Gaussian spot. It should be noted that while spot size is a measurable metric and should be sample 

independent, image resolution is a term which is ill-defined and inconsistent among the literature and the industry, with 

no standard, and seems quite sample and SEM-condition dependent. We include a value for an unobtainable, perfect 

zero spot size (actually 0.01 nm to avoid possible strange boundary cases of a delta function-like beam impacting an 

edge exactly), impossible due to diffraction limits, but still of interest, as results at that condition demonstrate the effects 

of the scattering and interaction volume only, not convoluted with the spot profile. Note that offset and  are both 

strongly dependent on spot size. For offset, the offset has a strong linear dependence on spot size, and top likely does 

also although it is likely that the waveform at the top of the feature used here has some kind of second order non-linear 

interaction with the edge algorithm. The edge detection repeatability  has a strong quadratic dependence on spot size. 

Both fits are included, with the quadratic fit having significantly higher correlation, with enough data points to 

demonstrate this significance. 

  
Figure 7: Influence of sample SWA on average offset and , using the Si lines on thin SiO2 virtual sample set. Note the response is 

roughly linear (maybe quadratic, but need more points to confirm). For both offset and , the data points at SWA  90° are treated 

with a separate line fits as all these edge detection algorithms are discontinuous in behavior due to ceasing to image the feature 

bottom of a re-entrant profile (N=1000). 
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Figure 8: Influence of SEM beam spot size on average offset and , using the Si lines on thin SiO2 virtual sample set, at the DOE’s 

base condition at 500 V. Note the response is roughly linear, although a quadratic dependence is more likely for bottom  (N=1000). 

Aside from the DOE, another more basic feature explored in this simulation study was a single 50 nm step of 50 nm 

height on a Si surface. The resulting waveforms, collected with 0.5 nm Gaussian spot size (1) and a perfect 0.01 nm 

spot size at various beam energies (300 V, 500 V, 800 V) and with 0.1 nm pixel size and N=25000 incident electrons, 

are used next to study functional forms of the resulting waveform from such a simple perfect target. Materials of the 

step were also varied, although to a lesser extent, with both Si and PMMA. 

3. Simplified Linescan Model 

While rigorous 3D Monte Carlo simulations of SEM linescans can be extremely valuable, they are often too 

computationally expensive for certain applications. Here, our goal is to understand how the systematic response of the 

SEM measurement tool impacts statistical LER measures such as the PSD. Rather than applying rigorous Monte Carlo 

simulations to a rough feature, we will instead develop a simplified, analytical linescan model that will be more 

computationally appropriate to the task. This analytical linescan expression will then be fit to the rigorous Monte Carlo 

simulations. Finally, in the next section, the analytical linescan model will be applied to the problem of measuring a 

rough line edge. 

The analytical linescan model will be developed using the simplest possible feature: a silicon edge on a silicon wafer. A 

point beam of electrons will be scanned in the x-direction perpendicular to the edge feature, which is placed at x = 0 

(later a PMMA edge will be used, see Figure 9). The linescan, corresponding to the detected secondary electrons, will 

be SE(x). Consider first a bare silicon wafer (corresponding to when the scan beam is a long way from the edge). Inside 

the silicon we can assume that the energy deposition profile takes the form of a double Gaussian, with a forward 

scattering width and a fraction of the energy forward scattered, and a backscatter width and a fraction of the energy 

deposited by those backscattered electrons. We will also assume that the number of secondary electrons that are 

generated within the wafer are in direct proportion to the energy deposited per unit volume, and the number of 

secondary electrons that escape the wafer (and so are detected by the SEM) are in direct proportion to the number of 

secondaries near the very top of the wafer. 

The secondary electrons that reach the detector will emerge some distance r away from the position of the incident 

beam. From the assumptions above, the number of secondaries detected will be a function of 

 

2222
2/2/

)( bf rr
beaerf

 
  Eq. (1) 

where f and b are the forward and backscatter ranges, respectively. The integration of this function over all space will 

be the linescan signal at x = -∞. 
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Figure 9:  Geometry and physical interpretation of the analytical linescan model derived in this paper, showing a PMMA edge on a 

silicon wafer. 
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Now consider the effect of the step. Before looking at a silicon step, imagine a completely absorbing step that does not 

allow the release of secondary electrons. In other words, all electrons that travel up into the step material simply 

disappear. For x < 0, we can calculate the reduction in the SE signal by calculating the number of absorbed secondaries 

as 
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where r0 = x/cos().  Carrying out the integration, 
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The linescan signal for x < 0 will be 
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where  
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2




SE

b b
 . 

In what will follow, the complimentary error functions will prove cumbersome.  However, since they are only used for x 

< 0 they can be approximated with exponentials with good-enough accuracy. 
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Let us see how this model matches the rigorous Monte Carlo simulations of the linescan for the case of a silicon edge at 

500 V landing energy, using a point incident beam.  Figure 10 shows the best fit of Eq. Eq. (7) to the simulation results.  

The best fit parameters are  = 1.73 nm, b = 40.4 nm, and  = 0.22.  The equation matches the simulations for the 

most part within the noise of the simulations, and the resulting parameters make intuitive sense for the scattering of 500 

V electrons in silicon. 

 
Figure 10. Best fit of Eq. Eq. (7) to rigorous Monte Carlo simulations of a silicon edge at 500 V landing energy, using a point 

incident beam, when x < 0 (that is, on the bottom half of the step).  The smooth (red) line is the equation and the jagged (blue) line is 

the Monte Carlo simulation. 

The assumption of an absorbing step is not completely accurate for silicon, and even less so for a step made of 

photoresist.  In reality, backscatter electrons travel up into the step and generate secondaries that can escape from the 

sidewall of the step.  As a result, the step may not absorb all of the electrons entering, and in fact may generate more 

secondaries than if no step were present.  This can be accommodated by simply modifying the forward scatter and 

backscatter step absorption terms in Eq. Eq. (7). 

For x < 0,   bf x
b

x

f ee
SE

xSE 
 //

1
)(

)(



 Eq. (8) 

where f is the fraction of forward scatter secondaries absorbed by the step and b is the fraction of backscatter 

secondaries absorbed by the step.  Note that if the presence of the step results in more secondary electrons, then the 

result will be a negative value of b. 
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The x < 0 linescan model of Eq. (8) was compared to the Monte Carlo simulations described in the previous section 

(using 5000 electrons per pixel) for the cases of an isolated silicon step on silicon and for a PMMA step on silicon, with 

landing voltages of 300, 500, and 800 V.  The fits of the model to the simulations are shown in Figure 11, with the best-

fit parameters shown in Table 1. As can be seen, the fits are within the random variations present in the Monte Carlo 

results. 

   

 a) b) 

   

 c) d) 

   

 e) f) 

Figure 11. Best fit of Eq. Eq. (8) to rigorous Monte Carlo simulations (N = 5000) of an isolated silicon step (parts a), c), and e)) and 

PMMA step (parts b), d), and f)) on a silicon wafer at 300, 500, and 800 V landing energy, using a point incident beam, when x < 0 

(that is, on the bottom half of the step).  The smooth (red) line is the equation and the jagged (blue) line is the Monte Carlo 

simulation. 
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Table 1.  Best fit parameters of Eq. Eq. (8) to rigorous Monte Carlo simulations of an isolated silicon step and PMMA step 

on a silicon wafer at 300, 500, and 800 V electron energy, using a point incident beam, for x < 0. 

 Electron Energy 

 300 V 500 V 800 V 

Si wafer background signal, SE(-∞) 1.070 0.818 0.597 

Si forward scatter range, f (nm) 1.37 2.31 3.96 

Si backscatter range, b (nm) 43.5 43.0 43.7 

Si step forward scatter absorption, f 0.223 0.243 0.267 

Si step backscatter absorption, b 0.251 0.212 0.171 

PMMA step forward scatter absorption, f 0.272 0.316 0.363 

PMMA step backscatter absorption, b 0.055 -0.047 -0.162 

When x > 0, the incident beam is on top of the step. A model similar to that described for the bottom of the step can be 

applied to the top, but with some differences.  The edge of the step does not absorb the long-range backscattered 

electrons, and in fact enhances the release of secondaries created by the forward scattered electrons.  Thus, we will add 

a positive term ex
ee

 /
 to account for the enhanced escape of forward-scattered secondaries where e is very similar 

to the forward scatter range of the step material.  When the incident beam is very close to the step, however, the 

interaction volume of the forward-scattered electrons with the material is reduced, causing the generation of less 

secondaries.  Thus, we subtract a term vx
v e

 /
 where v < e.  This gives our linescan expression for the top of the 

step: 
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 Eq. (9) 

Combining the x < 0 and x > 0 linescan expressions into one expression (using the unit step function, u(x)), we have a 

final linescan expression for the case of a point incident beam. 

    )(1)()(1)()(
////

xueeSExueeSExSE vebf x
v

x
e

x
b

x

f


 
  Eq. (10) 

Figure 12 shows the best fit of Eq. Eq. (10) to the Monte Carlo simulations for both silicon and PMMA steps on a 

silicon wafer at 300, 500, and 800 V electron voltages.  In addition to the parameters shown in Table I (which were not 

modified), the new best-fit parameters of Eq. Eq. (10) are shown in Table 2. 
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Figure 12. Best fit of Eq. Eq. (10) to rigorous Monte Carlo simulations of an isolated silicon step (parts a), c), and e)) and PMMA 

step (parts b), d), and f)) on a silicon wafer at 300, 500, and 800 V landing energy, using a point incident beam.  The smooth (red) 

line is the equation and the jagged (blue) line is the Monte Carlo simulation. 
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Table 2.  Best fit parameters to rigorous Monte Carlo simulations of an isolated silicon step and PMMA step on a silicon 

wafer at 300, 500, and 800 V electron energy, using a point incident beam. 

 Electron Energy 

 300 V 500 V 800 V 

Si step forward scatter range, e (nm) 1.47 2.64 4.65 

Si step volume loss range, v (nm) 0.40 0.27 0.11 

Si step edge enhancement factor, f 1.61 1.65 1.87 

Si step volume loss factor, v 0.924 0.660 0.543 

PMMA step forward scatter range, e (nm) 3.42 3.54 5.28 

PMMA step volume loss range, v (nm) 0.53 1.43 2.39 

PMMA step edge enhancement factor, f 0.382 1.427 2.784 

PMMA step volume loss factor, v 0.347 1.143 1.968 

PMMA background signal, SE(∞) 2.286 2.132 1.552 

Real scanning electron microscopes do not have point beams of electrons impinging on the sample.  Instead, the beam is 

approximately a Gaussian owing to the finite resolution of the microscope and other beam non-idealities.  Thus, the 

expected linescan will be Eq. Eq. (10) convolved with a Gaussian.  Carrying out this convolution gives 
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Eq. (11) 

where p is the standard deviation (width parameter) of the Gaussian electron beam probe.  Monte Carlo simulations 

using a Gaussian beam with p = 0.5 nm can now be compared with Eq. Eq. (11).  Without any adjustment of the 

parameters given in Tables 1 and 2, excellent fits were obtained.  A representative example is shown in Figure 13 for 

the PMMA step and a 500 V beam (RMS error of fit to Monte Carlo simulation is 0.01). 

The final linescan model of Eq. Eq. (11) has 11 physically meaningful parameters (or 10 for the case of a silicon step on 

a silicon wafer since SE(∞) = SE(-∞)).  For example, the pair e, e represent the range and amount of forward-

scattering generated secondaries in the PMMA step that escape from the step edge.  They control the height of the 

secondary electron peak near the step edge and the rate of fall-off as the beam moves to the right.   
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Figure 13. Comparison of the linescan model of Eq. Eq. (11) to rigorous Monte Carlo simulations (N = 5000) of an isolated PMMA 

step on a silicon wafer at 500 V landing energy, using a 0.5 nm Gaussian incident beam.  The smooth (red) line is the equation and 

the jagged (blue) line is the Monte Carlo simulation.  RMS error of fit to Monte Carlo simulation is 0.01. 

4. Application of Linescan Model to PSD Measurement 

In a previous publication on PSD measurement [5], the impact of the electron beam spot and its interaction with the 

materials on the wafer was assumed to be a form of metrology averaging over y (along the line length).  A Gaussian-

shaped beam of electrons was assumed to interact with the feature being measured to produce a Gaussian-shaped 

measurement signal (wider than the incident beam) of FWHM .  The impact of this averaging can be seen in Figure 14 

using the metrology simulator from Ref. [5], and is a function of /y (where y is the sampling distance for the 

measurement).  For no averaging ( = 0), aliasing makes the measured PSD higher at the high frequencies.  Averaging 

lowers the measured PSD at high frequencies, thus reducing the impact of aliasing.  However, for  > y/2 the impact 

of averaging is greater than aliasing, and the measured PSD is suppressed at high frequencies.  (Note that the 

simulations shown in Figure 14 assumed no metrology noise, and thus  = 0.) 

A goal of this work is to understand the whether the assumption of a Gaussian-shaped averaging along y is a good one, 

and if so, what is an appropriate Gaussian FWHM ().  As the above work has shown, a point electron beam incident on 

the top of a PMMA step produces essentially a Gaussian sampling of the feature with a width parameter e, the PMMA 

forward scattering range. This Gaussian feature interaction range is then convolved with the Gaussian beam with a 

width parameter p.  Thus, the FWHM of the Gaussian averaging function will be 

22355.2 pe    Eq. (12) 

For example, the 500 V PMMA step modeled above showed e = 3.5 nm (Table II).  If p ≈ 1.0 nm (a typical value), 

the resulting FWHM of the Gaussian averaging will be  = 8.6 nm.  Since this value is larger than half of the sampling 

distance typically used for LER measurement, the result will be suppression of high frequency roughness, as seen in 

Figure 7.  In fact, an optimum sampling distance for this case will be about y = 2 ≈ 17 nm. 
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Figure 14.  Simulations of the impact of averaging on the measured PSD (number of measurement points N = 256, correlation length 

 = 10 nm, roughness exponent H = 0.5, sampling distance y = 2 nm, rectangular measurement window).  The FWHM of the 

Gaussian measurement signal () is varied from 0 to twice the sampling distance.  The continuous PSD (without aliasing, leakage or 

averaging) is shown as the dotted line. [Figure from Ref. 5]. 

5. Conclusions and Future Work 

In this work, JMONSEL simulations with edge algorithms were used to explore random and systematic error sources in 

CD-SEM metrology. Offset and  were found to vary strongly with SEM beam spot size and energy, materials used, 

feature sidewall angle (SWA), TCR, but interestingly, not footing. The Monte Carlo simulations allow us to explore , 

although noise will need to be supplemented with a term to represent other real-life noise sources such as electronic 

noise, environmental electromagnetics, vibrations, contamination, charging, or others.  Additionally, offsets were also 

shown to vary strongly with many of these parameters, and if some of these parameters vary along the length of a line, 

such as SWA, TCR or material homogeneity, additional apparent LER might result after edge topography points are 

assigned. 

An analytical linescan function was derived based on physical parameters, which fits the Monte Carlo results very well 

for the Si or PMMA step on Si. These best-fit parameters allowed us to extract an estimate of the beam/resist interaction 

width, giving  ≈ 8.6 nm at 500 V. These findings are important considerations in properly analyzing PSD. Knowing 

FWHM of beam/resist interaction allows us to set up an optimal LER/LWR sampling distance. The ideal sampling 

distance should be double the beam/resist interaction width.  For the cases explored here (an ideal 50 nm resist edge on 

silicon) the optimal LER sampling distance was found to be about 16–25 nm, depending on the beam energy.  This is 

bigger than expected, and definitely larger than the current value recommended in the SEMI standard, which is 10 nm. 

The work presented here is not complete. Detailing the error sources in SEM metrology is an important step in 

ultimately determining error estimates for all of the parameters extracted from a PSD.  Other plans for this work include 

extension of the analytical linescan function from a single step-edge to a full line, the impact of resist thickness and 

sloped profile, and exploration of use of this function as an improved edge detection algorithm tailored for such cases. 
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