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Measuring line-edge roughness in a top-down scanning electron microscope (SEM) is complicated
by noise in the SEM image, which biases the measured roughness. When either the roughness is
small or the noise is large, it can become very difficult to separate noise from roughness to produce
an unbiased estimate of the feature roughness. Synthetic SEM images with known roughness and
noise properties can be used to explore the ultimate limits of SEM-based roughness metrology, but
only if the noise in the synthetic images mimics the noise behavior of real images. By carefully
analyzing the properties of experimental SEM images as a function of the number of frames of
averaging (which directly modulates SEM noise), a noise model is developed. This model uses a
Gamma distribution for the grayscale noise and then scales the image so that no more than 0.3% of
the pixels are pegged at the maximum grayscale value of 255. The resulting synthetic SEM images
mimic experimental SEM images in both signal and noise and will serve as a valuable tool for
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I. INTRODUCTION

The most common method for measuring line-edge
roughness (LER) and linewidth roughness for lithographi-
cally patterned features in semiconductor manufacturing (and
other nanofabrication applications) uses images from a
top-down scanning electron microscope (SEM). The basic
steps in the measurement process are as follows: (1) create
an image of the sample; (2) detect the rough edges of each
feature in the image; and (3) determine roughness as three
times the standard deviation of the edge (or width between
two edges) compared to an estimate of the ideal edge
(or width). In this simple approach, the resulting roughness
will be biased by noise in the SEM image. In other words,
noise in the SEM image produces noise in the detected edge
positions that adds in quadrature with the actual edge rough-
ness to produce a measure of roughness that is biased higher
than the actual roughness. For unbiased roughness estima-
tion, two subsequent steps are added to the measurement
process: (4) estimation of the noise in the detected edges due
to SEM metrology and (5) subtraction of the estimated
metrology noise from the biased roughness measurement to
produce an unbiased roughness measurement.

In previous studies, a new technique for producing unbi-
ased estimates of roughness parameters was investigated.”™
It is based on the use of an analytical model for SEM scatter-
ing behavior that predicts linescans for a given feature geom-
etry. Run in reverse, an inverse linescan model can be used
for edge detection in such a way that SEM noise can be ade-
quately measured and statistically subtracted from the rough-
ness measurement, thus providing unbiased estimates of the

Note: This paper is part of the Conference Collection: The 63rd
International Conference on Electron, Ion, and Photon Beam Technology
and Nanofabrication (EIPBN 2019).
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roughness parameters. These previous studies investigated
the impact of SEM pixel size/magnification, the number of
measurement frames averaged (i.e., electron dose), SEM
voltage, and multiple CD-SEM tools when measuring the
same wafers. While the true unbiased roughness was identi-
cal (since all measurements involved the same wafers), the
biased roughness varied by more than a factor of 3 over the
range of measurement conditions studied. These studies
showed that in most cases the unbiased roughness measured
over a wide range of SEM operating conditions varied by
only a few percent, validating the effectiveness of the unbi-
ased roughness measurement approach.”*

In light of this demonstrated success in making unbiased
roughness measurements, there is still a question as to the
ultimate measurement resolution for unbiased roughness. In
particular, it is unclear what the maximum ratio of noise to
signal can be tolerated while still giving acceptable answers.
In other words, how small can the true roughness be while
still being accurately extracted from a noisy SEM image? Or,
for a given amount of true roughness of the sample, how
much SEM noise can be tolerated while still producing an
acceptable estimate of the unbiased roughness? To answer
these questions, simulations can be used to probe the efficacy
of unbiased roughness measurement. By generating synthetic
SEM images of lines and spaces with randomly rough features
of predetermined statistical properties,” different amounts of
noise can be added to those images. Analyzing these noisy
SEM images as if they were experimentally generated, the
measured statistical properties of the features can be compared
to the true values (which served as inputs to the generated
synthetic SEM images) as a function of the amount of noise.
In this way, we can probe the robustness of current methods
of measuring roughness in the presence of very high levels of
noise and very low levels of roughness.

The usefulness of this approach depends on how well the
synthetic SEM images mimic the behavior of actual SEM
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images as might be measured from actual wafers. The gener-
ation of a synthetic SEM image involves three steps: (1)
generation of “actual” feature edges with predetermined
statistical roughness; (2) conversion of these edges to a
noise-free SEM image; and (3) the addition of noise to the
SEM image. Step one can be easily realized and has been
extensively characterized.” Step two is more complex, and
here the previously described Analytical Linescan Model
will be used for the cases of resist on an organic underlayer
and silicon features etched into silicon.”® Step three,
however, has not been adequately addressed in past work
and is the subject of this paper.

Beginning with an experimental characterization of noise
in SEM images, a simplified model for SEM image noise will
be proposed. This model includes the possibility of adding
noise to a synthetic grayscale SEM image so that the grayscale
values exceed the allowed range of 0-255 (for an 8-bit
image). Thus, a noise model must include a scaling algorithm
that mimics the actual scaling used by commercial SEMs
when translating detector signals into grayscale images.

Il. IMPACT OF EDGE DETECTION NOISE ON
ROUGHNESS MEASUREMENT

The biggest impediment to accurate roughness measure-
ment is noise in the CD-SEM image. SEM images suffer
from shot noise, where the number of electrons striking a
detector for a given pixel varies randomly, followed by
channel noise during the amplification of the detected signal
to its final state.” For an idealized SEM imaging process, the
number of detected secondary electrons is typically described
as following a Poisson distribution, where the variance in the
number of electrons detected for a given pixel of the image
is equal to the expected number of electrons detected for that
pixel. For a large mean number of detected electrons per
pixel, the Poisson distribution is approximately Gaussian,
but for a small mean number of detection events, the distri-
bution will be skewed to the right. The real process of gener-
ating, detecting, and amplifying secondary electron signals is
more likely a compound Poisson process and has a final
signal distribution empirically observed to be closer to
lognormal.'” Here, actual SEM images taken at different

E

Fic. 1. Portions of SEM images of nominally identical 32-nm pitch resist
features with 2, 8, and 32 frames of integration (respectively, from left to
right). Doubling the frames of integration doubles the electron dose per
pixel. Since the dose is increased by a factor of 4 in each case, the noise
goes down by about a factor of 2. Reprinted from Chris A. Mack, J. Micro/
Nanolithogr. MEMS MOEMS 17, 041006 (2018). Copyright 2018, Society
of Photo Optical Instrumentation Engineers.
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electron doses will be used to explore the distribution of
SEM image noise empirically. Figure 1 shows portions of
three experimental SEM images of nominally the same litho-
graphic features taken at different electron doses.''

Consistent with observed and expected behavior, we
assume the SEM edge detection noise to be independent of
the true feature roughness. SEM edge detection noise can be
thought of as the interaction of grayscale pixel noise (statistical
variations in the detected secondary electron signal for a given
pixel) with the true (noiseless) linescan response of the edge
to produce an uncertainty in the detected edge position. Since
the grayscale pixel noise is a statistical phenomenon related to
the mean (true) grayscale value, its fluctuations will be inde-
pendent of the feature roughness. Under this assumption,
SEM edge detection noise adds in quadrature to the actual
roughness of the patterns on the wafer to produce a measured
roughness that is biased higher, '

2 _ 2 2
Opiased — Cunbiased + O hoise> (1)

where 0p.50.4 1S the roughness measured directly from the
SEM image, 0,piasea 1 the unbiased roughness (that is, the
true roughness of the wafer features), and o,,.;, is the random
error in the detected edge position (or linewidth) due to noise
in the SEM imaging and edge detection. To obtain an unbi-
ased estimate of the feature roughness, the measured rough-
ness must be corrected by subtracting an estimate of the noise
term.

The most common method for noise measurement uses
the roughness power spectral density (PSD). The PSD is the
variance of the edge per unit frequency and is calculated as
the square of the coefficients of the Fourier transform of the
edge deviation. The low-frequency region of the PSD curve
describes edge deviations that occur over long length scales,
whereas the high-frequency region describes edge deviations
over short length scales. Commonly, PSDs are plotted on a
log-log scale.

The impact of SEM edge detection noise on the PSD can
be modeled under a reasonable assumption that can be exper-
imentally verified: edge detection noise is statistically inde-
pendent of edge position. Statistical independence in the
x-direction (perpendicular to the line edge) means that edge
detection noise will add in quadrature to the actual rough-
ness, as described in Eq. (1). Statistical independence in the
y-direction (parallel to the line edge) means that edge detec-
tion noise will be white noise, with no correlations. Given
the grid size along the length of the line (Ay), SEM edge
detection white noise biases the PSD according to'?

PSDpiased(f) = PSDunbiasea() + Copise AY- 2)

We expect lithographically patterned features to have an
unbiased PSD behavior that is correlated at short length
scales (high frequency) so that the roughness becomes very
small at high frequencies. SEM image noise, on the other
hand, is white noise so that the noise PSD is flat over all fre-
quencies. Thus, at a high enough frequency, the measured
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Fic. 2. Principle of noise subtraction: using the power spectral density,
measure the flat noise floor in the high-frequency portion of the measured
PSD, then subtract the white noise to get the true PSD (Ref. 11).

PSD will be dominated by image noise and not actual
feature roughness (the so-called “noise floor”).'* Thus, mea-
surement of the high-frequency PSD (in the absence of any
image filtering) provides a measurement of the SEM image
noise. Figure 2 illustrates this approach.

From the discussion above, the measurement of unbiased
roughness involves first the measurement of the biased
roughness from detected edges that include noise. Then,
using the biased PSD the noise floor is detected so that an
estimate of G, iS obtained. Finally, the noise estimate is
used to create an unbiased estimate of the roughness accord-
ing to Eq. (1). Uncertainty in the final unbiased roughness
comes from uncertainty in the measurement of the biased
roughness and uncertainty in the measurement of the edge
detection noise. Note that any filtering of the image prior to
edge detection will change the measured PSD (especially in
the high-frequency region), making noise measurement and
subtraction unreliable. In this study, the Fractilia Inverse
Linescan Model will be used for all edge detection.'?

lll. MODELING SEM EDGE DETECTION NOISE

There are two potential types of SEM edge detection
noise: errors in the (x,y) position of a pixel (x is perpendicu-
lar to the nominal feature edge) due to stage or beam drift
and errors in the grayscale value of a pixel (called here
“beam position noise” and ‘“‘grayscale noise,” respectively).
These two sources of SEM noise will produce different
impacts on measurement uncertainty based on their different
probability distributions. From the perspective of creating
synthetic SEM images, these two sources of noise are
inserted into the SEM generation process at different points.
The steps for generating a synthetic SEM image will be: (1)
generation of “true” feature edges with predetermined statisti-
cal roughness; (2) addition of beam position noise as
x-position noise to the edges (y-position noise will be
assumed to have a negligible impact since its magnitude will
be far less than the correlation length of the roughness); (3)
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conversion of these edges to a noiseless synthetic SEM
image using the Analytical Linescan Model (for example);
and (4) the addition of grayscale noise to each pixel in the
SEM image.

Ideal (true) feature edges with random roughness that
follows a given power spectral density can be generated
using techniques previously described.” Beam position noise
can be added to these rough edges by adding a simple
Gaussian-distributed random deviation (mean zero, standard
deviation of oy,;,) to each edge position at its sampled loca-
tion in y. Two random edges (assumed to be uncorrelated
with each other in this case) combine to form a line of a
given mean width and combined with other features at a
given mean pitch. Using a specified pixel size, the features
are converted to SEM linescan data using the Analytical
Linescan Model, assuming PMMA properties for both the
feature and the substrate (equivalent to simulating resist on
an organic underlayer) or etched silicon features.”®* The line-
scans were then converted to 8-bit grayscale values (integers
in the range of 0-255), scaling the linescans to run between
about 60 and 170 grayscale. This range corresponds to
typical experimentally observed linescans at high numbers of
frames. Note that the Analytical Linescan Model used here
does not account for charging effects.

The next step, adding grayscale noise to the otherwise
noiseless synthetic SEM, requires careful consideration.
There are two questions that must be answered: what proba-
bility distribution best applies to added grayscale noise? And
what happens when added noise creates a grayscale value
greater than 255? Both of these questions are best answered
by observing the behavior of experimental SEM images. Two
different wafer features were examined: an isolated edge of
resist on an amorphous carbon hardmask and linespace pat-
terns of pitch=32nm. SEM images were taken on a Hitachi
CG5000 at 500V, 2048 x 2048 pixels, with a square pixel
size of 0.8 nm. As is common in SEM metrology, the final
image is the average of a specified number of single-frame
images. A single-frame image comes from one complete
raster scan of the sample by the electron beam. To reduce
noise, multiple frames are captured by repeated scanning.
Here, the number of frames of averaging was varied between
1 and 32 so that the total electron dose per pixel varied by a
factor of 32.

Figure 3 shows example experimental SEM images and
linescans of the isolated edge feature for the cases of 2 and
32 frames of averaging. The Single Linescan plot shows the
grayscale values along one row of pixels across the image.
The Average Linescan plot shows the grayscale values with
each column of pixels in the y-direction averaged together.
Figure 4 shows histograms of the grayscale distribution in
each of the left and right side of the edge as a function of the
number of frames of averaging. While these distributions are
skewed right, they are not as heavily skewed as a lognormal.
They are, however, well described by a Gamma distribution.
(The skewness of the Gamma distribution is twice the ratio
of the standard deviation to the mean. The skewness of the
lognormal distribution is at least 1.5 times greater than that
of the Gamma distribution for small skewness and twice that
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Fic. 3. Experimental SEM images of an isolated edge at 2 and 32 frames of averaging. Also shown are the average linescan (the average of all pixels in the
y-direction) and a single linescan (an example of a single x-cut through the SEM image).

of the Gamma distribution for the case where the standard
deviation equals the mean.) As seen in Fig. 5, the average
grayscale value of the right side stays about the same as a
function of the number of frames, but the average value of
the right side increases with the number of frames, though it
seems to level off. The standard deviations of the right and
left side grayscale distributions decrease at about the same
rate with increasing frames.

The behavior seen in Figs. 3-5 can be explained by the
scaling step of generating an SEM image from a detector
signal. The detected SEM image signal, including all noise,
must be scaled and clipped to fit into a range of 0-255 gray
levels. If the mean (or median or mode) of the image pixel
values is scaled to be at, for example, a gray level of 128,
the spread of grayscale values due to noise may extend far
beyond that mean value. If any scaled pixel value extends

J. Vac. Sci. Technol. B, Vol. 37, No. 6, Nov/Dec 2019

beyond 255, it must be clipped to a value of 255. For a low-
noise image (such as a 32 frame image), it will be rare for a
pixel to reach 255, but for a high-noise image (say, two
frames of averaging), many pixels could be clipped at 255.
Looking at the left side histograms of Fig. 4, an interesting
observation can be made. In all cases, about 0.3% of the
pixels of the whole image have a grayscale value of 255. This
indicates that a scaling strategy like the following is probably
being used: (1) scale the signal to have a mean (or median)
value of 128 (or a similar value), (2) check to see if more than
0.3% of the pixels have values that equal or exceed 255; (3) if
so, scale down the signal further until at most 0.3% of the
pixels are at 255 or greater; and (4) clip any pixel values
greater than 255 to be 255. The consequences of this scaling
strategy are twofold. First, an acceptably small number of
pixels will have clipped grayscale values regardless of the



062903-5 C. A. Mack and G. F. Lorusso: Determining the ultimate resolution of SEM-based unbiased roughness

062903-5

0.018
0.016 - nght Side —Frames =2
—Frames =4
0.014 - —Frames =6
> 0.012 - —Frames =8
g —Frames = 10
o 0.010 - ~—Frames = 12
=) ~——Frames = 16
o
Qv 0.008 —Frames = 32
w  0.006
0.004
0.002
0.000 T T Sm—
50 100 150 200 250
Grayscale
0.014
" ~—Frames = 2
0.012 -+ Left Side ~—Frames = 4
" ~—Frames =6
0.010 X —Frames = 8
3 —Frames = 10
g 0.008 ~—Frames = 12
=] Frames = 16
o 0.006 —Frames = 32
e
0.004 -
0.002 |
0.000 I

Grayscale

Fic. 4. Histograms of the grayscale values of the right and left sides of the isolated edge experimental SEM images as a function of the number of frames of

averaging.

amount of noise in the image. Second, as the noise in the
image increases, the scaling reduces the noise range to fit into
the 0-255 grayscale range but in doing so makes the signal
range smaller. For the isolated edge case, this means that the
ratio of the mean grayscale values of the left side to the right
side (a material contrast) is highest at 32 frames of averaging
(2.21), but goes down as the number of frames decreases (to
1.46 at 2 frames). The implications of this scaling strategy
will be discussed below.

This scaling strategy is also seen in a set of images of
line/space patterns as a function of the number of frames of
averaging. In Fig. 6, average linescan plots of 32-nm pitch
line/space images (after etch) are shown as a function of the
number of frames of averaging. Due to the grayscale scaling
strategy employed by this CD-SEM, the increased noise of
the lower number of frames is transformed into a decreased
signal at a more constant level of noise. If the 32 frame
average linescan case is taken as an estimate of the actual
signal, the higher noise cases can be derived from the “actual
signal” by multiplying by a scale factor, then shifting to a
higher grayscale value by adding an offset. The resulting
scale and shift factors are shown in Fig. 7, determined as the
values that must be applied to the 32 frame linescan to
provide the best match to the other linescans.

As further evidence of the proposed scaling strategy, it
was observed that the 32 frame and 24 frame images for

these 32 nm pitch line/space patterns did not exhibit a notice-
able number of pixels clipped at 255. For the 16 frame
images, there were about 0.15% of the pixels at a grayscale
level of 255, and for 12 and lower frames, each image
showed about 0.3% of the pixels at 255.

The scaling observed for the signal also applies to the
noise. The same images used to extract the average linescans
shown in Fig. 6 were used to measure the grayscale noise as
a function of the number of frames of averaging. The gray-
scale noise was measured as the average of the standard devi-
ations of each column of pixels in the image, avoiding the
regions near the line edges. As seen in Fig. 8, the “as mea-
sured” noise does not follow the expected 1/v/N trend due
to the scaling of the grayscale levels of the image. However,
by rescaling the measured noise by dividing by the scale
factor as determined from the average linescans and given in
Fig. 7(a), the expected statistical behavior of the noise is
recovered. This allows us to generate a grayscale noise
model from these experimental SEM images prior to the
grayscale scaling step,

OSFGN

N = T Frames’ ®

where ogrgy 1S the single-frame grayscale noise (without
scaling), equal to 108 for this data set. While Eq. (3) is for

JVST B - Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena
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the 800 V after-etch data, a very similar result was obtained
for 500V after-development images of photoresist lines. For
that case, the single-frame grayscale noise in Eq. (3) is
changed from 108 to 141.

From Fig. 7, it appears that the grayscale scaling and the
grayscale shift track each other. In fact, they are approxi-
mately related by

Shift = 75(1 — scale). 4)
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Fic. 6. Average linescans (the average of all pixels in the y-direction) for

32nm line space patterns (after etch, Hitachi CG5000 CD-SEM, 800V,
0.8 nm square pixels) as a function of the number of frames of averaging.

J. Vac. Sci. Technol. B, Vol. 37, No. 6, Nov/Dec 2019

062903-6

11

2

1.0 4

0.9 A

0.8 A

0.7 A

0.6 A

Estimated Scaling Factor

0.5 A

0.4 T T T T T T
0 5 10 15 20 25 30 35

Number of Frames of Averaging

60
b)
40 A
30

20 A

Grayscale Shfit After Scaling

0 T T T T T T
0 5 10 15 20 25 30 35

Number of Frames of Averaging

Fic. 7. For the data in Fig. 6, the estimated (a) scaling and (b) grayscale shift
up after scaling required to turn the 32 frame average linescan into the other
linescans as a function of the number of frames.

Combining the shift and scale together gives a conversion
from the low-noise (unscaled) signal G;, to the noisy
(scaled) signal Gy,

Gy = scale x Gy + 75(1 — scale)
= scale x (G3, —75) +75. 5)

The reason for the shift is unclear, but the reason for the
scale comes from the need to keep the grayscale values
between 0 and 255, as discussed above.
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Fig. 6, the grayscale noise was calculated as the average standard deviation
of each column of pixels, avoiding the regions near the line edge. This “as
measured” grayscale noise was then rescaled by dividing by the scaling
factor found in Fig. 7(a).
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TaBLE 1. Comparison of experimental and synthetic SEM images for the after-etch case with 32 frames (linewidth=20nm, pitch=32nm, pixel

size =0.8 nm).
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IV. GENERATING REALISTIC SYNTHETIC SEM
IMAGES

The analysis of experimental CD-SEM images of various
features as a function of the number of frames of averaging
as described above can be used to define a method for gener-
ating synthetic SEM images that not only mimic the average
linescan behavior of the images but also the noise behavior.
The full process is as follows:

Step 1. Generate feature edges with predetermined statistical
roughness by specifying the mean linewidth and pitch, the
lo LER, the correlation length, the roughness exponent,
and the correlation between edges.

Step 2 (optional). If desired, beam position error can be
added to the output of step 1 by adding a random edge
deviation from a Gaussian random number of mean zero
and specified standard deviation.

JVST B - Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena
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TasLE II. Comparison of experimental and synthetic SEM images for the after-etch case with 8 frames (linewidth=20nm, pitch=32nm, pixel

size =0.8 nm).
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Step 3. Convert these edges to a noise-free synthetic SEM
image using, for example, the Analytical Linescan Model.
The output is a grayscale image with grayscale values in
the range of 0-255, but with actual grayscale values typi-
cally between 50 and 200.

Step 4. Add noise to the output of step 3 by changing each
pixel’s grayscale value to a Gamma-distributed random
number with the mode of the distribution equal to the

J. Vac. Sci. Technol. B, Vol. 37, No. 6, Nov/Dec 2019

noise-free grayscale value and the standard deviation of
the distribution given by Eq. (3).

Step 5. Scale the image if necessary. Check to see if
more than 0.3% of the pixels have values that equal or
exceed 255, and if so, scale down all the image grayscale
values until at most 0.3% of the pixels are at 255 or
greater. Finally, clip any pixel values greater than 255 to

be 255.
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TasLE III. Comparison of experimental and synthetic SEM images for the after-etch case with 2 frames (linewidth=20nm, pitch=32nm, pixel

size =0.8 nm).
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This process was used to generate synthetic SEMs for com-
parison to experimental SEMs collected as a function of the
number of frames of averaging in the SEM. Results are pre-
sented in Tables I-III. Since no attempt was made to cali-
brate the Analytical Linescan Model to the actual materials
used in the experiment, the average linescans do not match
exactly. However, the results are close enough to test out the
noise model being employed. As seen from the grayscale

histograms for 2, 8, and 32 frames, the synthetic SEM
images match the noise behavior of the experimental images
quite closely.

V. CONCLUSIONS

In order to study the ultimate limits of line-edge rough-
ness metrology using scanning electron microscopes, a

JVST B - Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena
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useful tool is the closed-loop simulation experiment of gen-
erating synthetic SEM images of known feature roughness
and then measuring those images as experimental data to
compare the measured results with the known correct
answers. In this way, the influence of nonideal behavior can
be investigated. While this approach has been used in the
past,’ these prior works have generally assumed Gaussian dis-
tributions of pixel noise and noise levels that are small com-
pared to the 255 range of grayscale values. When exploring
the limits of line-edge roughness metrology, high levels of
noise are needed and thus a more accurate model is needed
for how noise enters the SEM signal and how the SEM scales
the signal to fit within the 0-255 grayscale range.

This paper has proposed a noise model for SEM images
that assumes image noise is Gamma distributed, with the
mode of the distribution equal to the noise-free (ideal) signal
value. This noise model also adds the important step of
image scaling, lowering the magnitude of the signal in the
presence of high-noise levels to keep the fraction of image
pixels at or above 255 equal to a constant 0.3%. These
details of the noise model have been verified by comparison
to experimental SEM images as a function of the number of
frames of averaging used.

These empirical observations have also detected a gray-
scale shift in experimental SEM images so that the zero

J. Vac. Sci. Technol. B, Vol. 37, No. 6, Nov/Dec 2019
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baseline level of the image seems not to be fixed at zero
emitted secondary electrons. The exact nature of this zero-
shift of the gray scale has not been fully elucidated and so
has not been included in the noise model to date.

Future work will use the new noise model to compare the
measurement of synthetic SEM images to that of experimen-
tal SEM images and to elucidate the ultimate resolution of
SEM-based unbiased roughness measurements.
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